An introduction to combinatorial games

Eric Duchêne - Aline Parreau

LIRIS - Université Lyon 1 - CNRS

Ecole Jeunes Chercheurs en Informatique Mathématique Lyon - 23 janvier 2017

Introduction

- 2 players playing alternately;
- perfect information.

Who

When

Chess

Card games

Othello

Draughts

Tic Tac Toe

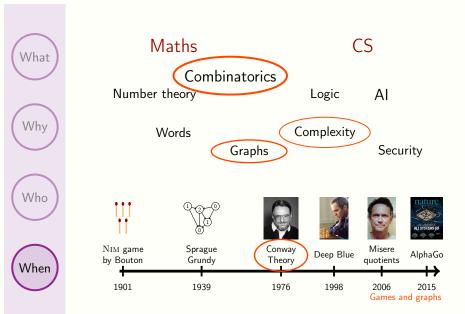
Pachisi

Go

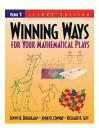
Who is winning and how?

→ Exact and approximate resolutions

Introduction



Reference books

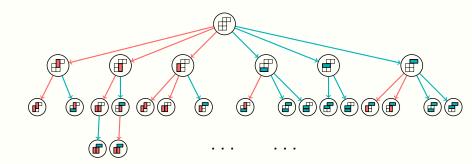


Pure combinatorial games - a definition

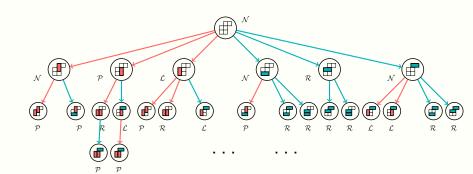
Berlekamp, Conway, Guy (Winning Ways, 1981)

- 2 players: Left and Right, that play alternately and cannot pass their turn;
- Perfect information, no chance;
- Finite number of moves, no draw, always a winner;
- Winner determined according to the last move (no scoring)

Game tree



Game tree



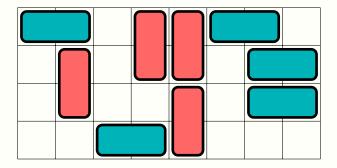
Computing the outcome of DOMINEERING

- Unknown complexity on a $n \times m$ board.
- When *n* and *m* are fixed:

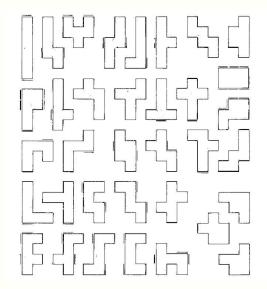
M/II	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
1	2	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н
2	V	1	1	Н	V	1	1	Н	V	1	1	Н	2	1	1	Н	Н	1	1	Н	Н	Н	1	Н	Н	Н	1	Н	Н
3	V	1	1	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	H	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н
4	V	V	V	1	V	1	V	Н	V	Н	V	Н	2	Н	Н	Н	Н	Н	H	Н	H	Н	Н	Н	Н	Н	Н	Н	Н
5	V	Н	V	Н	2	Н	Н	Н	Н	Н	Н	Н	Н	H	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
6	V	1	V	1	V	1	V	Н	V	1	1	Н	V	H		Н		lh	lh	Н		Н	1h	Н	1h	Н	lh	Н	1h
7	V	1	V	H	V	Н	1	H	H	Н	H	H	Н	H	Н	Н	Н	Н	Н	H	Н	H	H	Н	H	H	Н	H	Н
8	V	V	V	V	V	V	V	1	V	H	V		V			2h		lh		Н				lh					
9	V	Н	V	H	V	Н	V	H	1	Н	1h	Н	lh	H	1h	Н	1h	Н	lh	H	lh	Н	H	Н	H	Н	Н	H	Н
10	V	1	V	V	V	1	V	V	V	1			V							2h		lh				lh			
11	V	1	V	Н	V	1	V	Н	lv		12	Н		1h	1h	Н		1h	1h	Н		Н	1h	Н		Н	1h	Н	

[Bullcock's website]

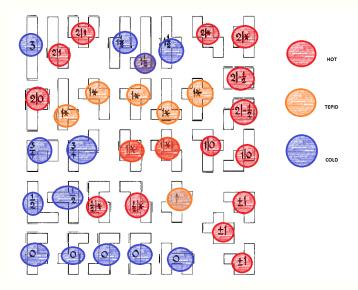
Decomposing DOMINEERING into a sum of games



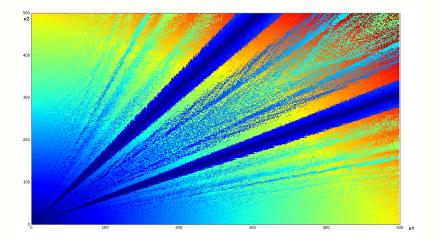
How to play on a big DOMINEERING game?



How to play on a big DOMINEERING game ?



Values of positions of $\ensuremath{\mathrm{WYTHOFF}}$



The PSPACE class

Definition: a decision problem is PSPACE if it can be solve in polynomial space by a Turing Machine.

The standard PSPACE-complete problem :

• **Input** : A quantified boolean formula:

$$Q_1 x_1 Q_2 x_2 ... Q_n x_n, \varphi(x_1, ..., x_n)$$

with $Q_i \in \{\exists, \forall\}, x_i \in \{0, 1\}$

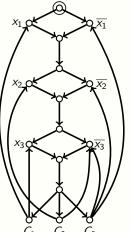
• Output : Is the formula true ?

An equivalent problem : QBF-GAME

ED-Geography is PSPACE-complete [Schaeffer 1978]

Reduction from $\operatorname{QBF-GAME}$:

$$(x_1 \lor x_3) \land (x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$



Some nimbers sequences

ARCKAYLES on a path

 $\begin{smallmatrix}0&0&1&1&2&0&3&1&1&0&3&3&2&2&4&0&5&2&2&3&3&0&1&1&3&0&2&1&1&0&4&5&2&7\\4&0&1&1&2&0&3&1&1&0&3&3&2&2&4&4&5&5&2&3&3&0&1&1&3&0&2&1&1&0&4&5&3&7...\end{smallmatrix}$

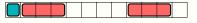
Period 34 with some finite exceptions up to 52

James Bond Game

0 0 0 1 1 1 2 2 0 3 3 1 1 1 0 4...

2²⁸ known values, periodicity conjectured

0.106 Game



 $0\; 1\; 0\; 0\; 0\; 1\; 2\; 2\; 2\; 1\; 4\; 4\; 0\; 1\; 0\; 6...$

Period 328226140474, with preperiod 465384263797.

Guy's conjecture: all finite octal games have periodic nimber sequence.

Conclusion

Current research questions ?

- Graphs and Games: combinatorial games version on graphs
- Metatheory: Misère, scoring games, loopy games
- Link with other fields:
 - Artificial Intelligence for generic games
 - Game versions of parameters of graphs
 - Logic, automata theory...

Merci!