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Context

Starting point:

How do numerical algorithms behave in �nite precision arithmetic?

Typically,

I basic matrix computations: Ax = b, ...

I �oating-point arithmetic as speci�ed by IEEE 754.

Finite precision ⇒ rounding errors:

2.3456× 5.4321 = 12.74153376
2.3456 / 5.4321 = 0.43180353822646858489...
2.3456 + 5.4321 = 7.7777

What is the e�ect of all such errors on the computed solution x̂ ?
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Rounding error analysis

Old and nontrivial question [von Neumann, Turing, Wilkinson, ...]

In this lecture, two approaches:

A priori analysis:

I Goal: bound on ||x̂ − x ||/||x || for any input and format

I Tool: the many nice properties of �oating-point

I Ideal: readable, provably tight bound + short proof

A posteriori, automatic analysis:

I Goal: x̂ and enclosure of x̂ − x for given input and format

I Tool: interval arithmetic based on �oating-point

I Ideal: a narrow interval computed fast
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Rounding error analysis

Old and nontrivial question [von Neumann, Turing, Wilkinson, ...]

In this lecture, two approaches:

A priori analysis: → this lecture

I Goal: bound on ||x̂ − x ||/||x || for any input and format

I Tool: the many nice properties of �oating-point

I Ideal: readable, provably tight bound + short proof

A posteriori, automatic analysis: → Nathalie's lecture

I Goal: x̂ and enclosure of x̂ − x for given input and format

I Tool: interval arithmetic based on �oating-point

I Ideal: a narrow interval computed fast
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Context

Floating-point arithmetic

A priori analysis

Conclusion
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Floating-point arithmetic

I An approximation of arithmetic over R.

I 1940's: �rst implementations [Zuse's computers].

I 1985-2008: full speci�cation [IEEE 754 standard].

I Today: IEEE arithmetic everywhere!

I Although often considered as fuzzy, it is highly structured and

has many nice mathematical properties.

↪→ How to exploit these properties for rigorous analyses?
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Floating-point numbers

Rational numbers of the form M · βE , where

M,E ∈ Z, |M| < βp, E + p − 1 ∈ [emin, emax].

I base β,

I precision p,

I exponent range de�ned by emin and emax.

Floats in C have β = 2, p = 24, and [emin, emax] = [−126, 127].
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Floating-point numbers

We assume

I emin = −∞ and emax = +∞: unbounded exponent range,

I β is even and p > 2.

De�nition: The set F of �oating-point numbers in base β and

precision p is

F := {0} ∪
{
M · βE : M ,E ∈ Z, βp−1 6 |M | < βp

}
.
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Floating-point numbers: other representations

I x ∈ F\{0} ⇒ |x | = m · βe , m = (∗ • ∗ · · · ∗︸ ︷︷ ︸
p − 1

)β ∈ [1, β).

I Three useful �units�:
I Unit in the �rst place: ufp(x) = βe ,

I Unit in the last place: ulp(x) = βe−p+1,

I Unit roundo�: u = 1
2
β1−p.

I Alternative views, which display the structure of F very well:
I x ∈ ulp(x)Z,
I |x | = (1 + 2ku) ufp(x), k ∈ N.

⇒ F ∩ [1, β) =
{
1, 1 + 2u, 1 + 4u, . . .

}
.
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Floating-point numbers: some properties

F can be seen as a structured grid with many nice properties:

I Symmetry: f ∈ F ⇒ −f ∈ F ;

I Auto-similarity: f ∈ F, e ∈ Z ⇒ f · βe ∈ F ;

I F ∩ [1, β) =
{
1, 1 + 2u, 1 + 4u, . . .

}
;

I F ∩ [βe , βe+1] has (β − 1)βp−1 + 1 equally spaced elements,

with spacing equal to

2uβe ;

I Neighborhood of 1 ∈ F:

. . . , 1− 4u
β , 1−

2u
β , 1, 1 + 2u, 1 + 4u, . . ..

Hence 1 is β x closer to its predecessor than to its successor.
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Rounding functions

Round-to-nearest function RN : R→ F such that

∀t ∈ R, |RN(t)− t| = min
f ∈F
|f − t|,

with given tie-breaking rule.

I t ∈ F ⇒ RN(t) = t

I RN nondecreasing

I reasonable tie-breaking rule:
I RN(−t) = −RN(t)
I RN(tβe) = RN(t)βe , e ∈ Z
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Rounding functions

More generally, a rounding function ◦ is any map from R to F such

that

t ∈ F ⇒ ◦(t) = t; t 6 t ′ ⇒ ◦(t) 6 ◦(t ′).

Adding just one extra constraint gives the usual directed roundings:

I Rounding down: RD(t) 6 t.

I Rounding up: t 6 RU(t).

I Rounding to zero: |RZ(t)| 6 |t|.

Key property for interval arithmetic:

t 6∈ F ⇒ t ∈
[
RD(t),RU(t)

]
.
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Error bounds for real numbers

E1(t) :=
|RN(t)− t|
|t|

6
u

1+ u
, E2(t) :=

|RN(t)− t|
|RN(t)|

6 u.

Proof:

I Assume 1 6 t < β, so that

RN(t) ∈ {1, 1 + 2u, 1 + 4u, . . . , β}.

I Then |RN(t)− t| 6 1
2
× 2u = u.

I Dividing by RN(t) > 1 gives directly the bound on E2.

I If t > 1 + u then the bound E1(t) 6 u
1+u follows.

I Else 1 6 t < 1 + u ⇒ RN(t) = 1 ⇒ E1(t) = t−1
t < u

1+u .

Bound u
1+u : sharp and well known [Dekker'71, Holm'80, Knuth'81-98],

but simpler bound u almost always used in practice.
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Error bounds for real numbers

I Example for the usual binary formats:

u ≈ u

1 + u
≈


4.9× 10−4 if p = 11 (half),

5.9× 10−8 if p = 24 (�oat),

1.1× 10−16 if p = 53 (double),

9.6× 10−35 if p = 113 (quad).

I For directed roundings, replace these bounds by 2u.

Conclusion: in all cases, the relative errors due to rounding can be

bounded by a tiny quantity which depends only on the format.
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Correct rounding

This is the result of the composition of two functions: basic

operations performed exactly, and exact result then rounded:

x , y ∈ F, op = ±,×,÷ ⇒ return r̂ := RN(x op y).

op extends to square root and FMA (fused multiply add: xy + z).

I The error bounds on E1 and E2 yield two standard models:

r̂ = (x op y)× (1 + δ1), |δ1| 6 u
1+u =: u1,

= (x op y)× 1

1 + δ2
, |δ2| 6 u.
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Example

Let r = x+y
2

be evaluated naively as r̂ = RN
(
RN(x+y)

2

)
.

I High relative accuracy is ensured:

r̂ =
RN(x + y)

2
(1 + δ1), |δ1| 6 u1,

=
x + y

2
(1 + δ1)(1 + δ′1), |δ′1| 6 u1,

=: r (1 + ε), |ε| 6 2u.

I We'd also like to have min(x , y) 6 r̂ 6 max(x , y) ...
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Example

7 Not always true:

β = 10, p = 3 ⇒ RN

(
RN
(
5.01 + 5.03

)
2

)
= RN

(
10

2

)
= 5.

3 True if β = 2 or sign(x) 6= sign(y).

Proof for base two:

I r̂ := RN
(
RN(x+y)

2

)
= RN

(
x+y
2

)
.

I x 6 x+y
2

6 y ⇒ RN(x) 6 RN
(
x+y
2

)
6 RN(y)

⇒ x 6 r̂ 6 y .

↪→ Repair other cases using r = x + y−x
2

. [Sterbenz'74, Boldo'15]
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. [Sterbenz'74, Boldo'15]
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Other typical �oating-point surprises

I β = 2, any precision p ⇒ 1
10
6∈ F.

I Loss of algebraic properties: commutativity of +, −, × is

preserved by correct rounding, but associativity and

distributivity are lost:

in general, ◦ (◦(x + y) + z) 6= ◦(x + ◦(y + z)).

I Catastrophic cancellation: 2 �oating-point operations are

enough to produce a result with relative error > 1.
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Catastrophic cancellation

For example, if x = 1, y = u
β , and z = −1 then

r̂ := RN(RN(x + y) + z) = 0,

and, since r := x + y + z is nonzero, we obtain |r̂ − r |/|r | = 1.

Possible workarounds:

I Sorting the input (if possible)

I Rewriting:

a2 − b2 = (a + b)(a− b).

I Compensation: compute the rounding errors, and use them

later in the algorithm in order to compensate for their e�ect.

[Kahan, Rump, ...]
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Conditions for exact subtraction

Sterbenz' lemma: [Sterbenz'74]

x , y ∈ F,
y

2
6 x 6 2y ⇒ x − y ∈ F.

I Valid for any base β.

I Applications: Cody and Waite's range reduction, Kahan's

accurate algorithms (discriminants, triangle area), ...

I Proof: [Hauser'96]

I assume 0 < y 6 x 6 2y .

I ulp(y) 6 ulp(x) ⇒ x − y ∈ βeZ with βe = ulp(y).

I x−y
βe is an integer such that 0 6 x−y

βe 6 y
ulp(y) < βp.
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Representable error terms

Addition and multiplication:

x , y ∈ F, op ∈ {+,×} ⇒ x op y − RN(x op y) ∈ F.

Division and square root:

x − y RN(x/y) ∈ F, x − RN
(√

x
)2 ∈ F.

I Noted quite early. [Dekker'71, Pichat'76, Bohlender et al.'91]

I RN required only for ADD and SQRT. [Boldo & Daumas'03]

FMA: its error is the sum of two �oats. [Boldo & Muller'11]
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Error-free transformations (EFT)

Floating-point algorithms for computing such error terms exactly:

I x + y − RN(x + y) in 6 additions [Møller'65, Knuth] and not less

[Kornerup, Lefèvre, Louvet, Muller'12]

I xy − RN(xy) can be obtained
I in 17 + and x [Dekker'71, Boldo'06]
I in only 2 ops if an FMA is available:

ẑ := RN(xy) ⇒ xy − ẑ = FMA(x , y ,−ẑ).

I Similar FMA-based EFT for DIV, SQRT ... and FMA.

EFT are key for extended precision algorithms: error compensation

[Kahan'65, ..., Higham'96, Ogita, Rump, Oishi'04+, Graillat, Langlois,

Louvet'05+, ...], �oating-point expansions [Priest'91, Shewchuk'97,

Joldes, Muller, Popescu'14+].
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ẑ := RN(xy) ⇒ xy − ẑ = FMA(x , y ,−ẑ).
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Optimal relative error bounds

When t can be any real number, E1(t) 6 u
1+u and E2(t) 6 u are

best possible:

t := 1 + u ⇒ RN(t) is 1 or 1 + 2u ⇒ |t − RN(t)| = u.

Hence

E1(t) =
u

1 + u

and, if rounding ties �to even�, RN(t) = 1 and thus

E2(t) = u.

These are examples of optimal bounds:

I valid for all (t,RN) with t of a certain type;

I attained for some (t,RN) with t parametrized by β and p.
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Can we do better when t = x op y and x , y ∈ F?
This depends on op and, sometimes, on β and p. [J. & Rump'14]

t optimal bound on E1(t) optimal bound on E2(t)

x ± y u
1+u

u

xy u
1+u

(?) u (?)

x/y


u

1+u if β > 2,

u − 2u2 if β = 2


u if β > 2,

u−2u2

1+u−2u2 if β = 2

√
x 1− 1√

1+2u

√
1+ 2u − 1

(?) i� β > 2 or 2p + 1 is not a Fermat prime.

−→ Two standard models for each arithmetic operation.
−→ Application: sharper bounds and/or much simpler proofs.
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Context

Floating-point arithmetic

A priori analysis

Conclusion
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Classical approach: Wilkinson's analysis

I This is the most common way to guarantee a priori that the
computed solution x̂ has some kind of numerical quality:

I the forward error ||x − x̂ || is 'small',
I the backward error ||∆A|| such that (A + ∆A)x̂ = b is 'small'.

I Developed by Wilkinson in the 1950s and 1960s.

I Relies almost exclusively on the �rst standard model:

r̂ = (x op y)(1 + δ), |δ| 6 u.

I Eminently powerful:

see Higham's book

Accuracy and Stability of

Numerical Algorithms (SIAM).
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Example of analysis: a2 − b2

Applying the standard model to each operation gives:

r̂ =
(
RN(a2)− RN(b2)

)
(1 + δ3)

=
(
a2(1 + δ1)− b2(1 + δ2)

)
(1 + δ3), |δi | 6 u1.

⇒ r̂ − r = a2(δ1 + δ3 + δ1δ3)− b2(δ2 + δ3 + δ2δ3).

⇒ |r̂ − r | 6 2u (a2+b2).

⇒ |r̂ − r |
|r |

6 2u × C , condition number C :=
a2 + b2

|a2 − b2|
.

Bound easy to derive and to interpret:

I If C = O(1) then relative error in O(u): highly accurate!
I If C ≈ 1/u then relative error upper bounded by ≈ 1: it could

be that catastrophic cancellation occurs.
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Example of analysis: (a + b)(a − b)

r̂ := RN
(
RN(a + b) · RN(a− b)

)
= (a + b)(a− b) · (1 + δ1)(1 + δ2)(1 + δ3), |δi | 6 u1.

⇒ |r̂ − r |
|r |

6 (1 + u)3 − 1 6 3u.

Always highly accurate!
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Floating-point summation

Given x1, . . . , xn ∈ F, evaluate their sum in any order.

Classical analysis [Wilkinson'60]:

I Apply the standard model n − 1 times.

I Deduce that the computed value ŝ ∈ F satis�es∣∣∣ŝ − n∑
i=1

xi

∣∣∣ 6 α

n∑
i=1

|xi |, α = (1 + u)n−1 − 1.

3 Easy to derive, valid for any order, asymptotically optimal:
error

error bound → 1 as u → 0.

7 But, even with u replaced by u
1+u , α = (n − 1)u + O(u2),

which hides a constant. So, classically bounded as

α 6 γn−1, γ` =
`u

1− `u
, `u < 1. [Higham'96]
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A simpler, O(u2)-free bound

Theorem [Rump'12]

For recursive summation, one can take α = (n − 1)u.

To prove this,

I Don't use just the (re�ned) standard model

|RN(x + y)− (x + y)| 6 u
1+u |x + y |. (1)

I But combine it with the lower-level property

|RN(x + y)− (x + y)| 6 |f − (x + y)|, ∀ f ∈ F,
6 min{|x |, |y |}; (2)

I Conclude by induction on n with a clever case-distinction

comparing |xn| to u ·
∑

i<n |xi |, and using either (1) or (2).
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Wilkinson's bounds revisited

Problem Classical α New α Ref.

summation (n − 1)u + O(u2) (n − 1)u [1]

dot prod., mat. mul. nu + O(u2) nu [1]

Euclidean norm ( n
2
+ 1)u + O(u2) ( n

2
+ 1)u [2]

Tx = b, A = LU nu + O(u2) nu [2]

A = RTR (n + 1)u + O(u2) (n + 1)u [2]

xn (recursive, β = 2) (n − 1)u + O(u2) (n − 1)u (?) [3]

product x1x2 · · · xn (n − 1)u + O(u2) (n − 1)u (?) [4]

poly. eval. (Horner) 2nu + O(u2) 2nu (?) [4]

(?) if n < c · u−1/2.
[1]: with Rump'13; [2]: with Rump'14; [3]: Graillat, Lefèvre, Muller'14;
[4]: with Bünger and Rump'14.
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Kahan's algorithm for ad − bc

Kahan's algorithm uses the FMA to evaluate det

[
a b
c d

]
= ad − bc :

ŵ := RN(bc);

f̂ := RN(ad − ŵ); e := RN(ŵ − bc);

r̂ := RN(f̂ + e);

I The operation ad − bc is not in IEEE 754, but very common:
I complex arithmetic,
I discriminant of a quadratic equation,
I robust orientation predicates using tests like 'ad − bc > ε?'

I If evaluated naively, ad − bc leads to highly inaccurate results:

|f̂ − r |
|r |

can be of the order of u−1 � 1.
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r̂ := RN(f̂ + e);

I The operation ad − bc is not in IEEE 754, but very common:
I complex arithmetic,
I discriminant of a quadratic equation,
I robust orientation predicates using tests like 'ad − bc > ε?'

I If evaluated naively, ad − bc leads to highly inaccurate results:

|f̂ − r |
|r |

can be of the order of u−1 � 1.



33

Kahan's algorithm for ad − bc

I Analysis in the standard model [Higham'96]:

|r̂ − r |
|r |

6 2u
(
1 + u|bc|

2|r |

)
.

⇒ high relative accuracy as long as u|bc| 6� 2|r |.

I When u|bc| � 2|r |, the error bound can be > 1 and does not

even allow to conclude that sign(r̂) = sign(r).

In fact, Kahan's algorithm is always highly accurate:

7 the standard model alone fails to predict this;

7 misinterpreting bounds ⇒ dismissing good algorithms.
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Further analysis [J., Louvet, Muller'13]

The key is an ulp-analysis of the error terms ε1 and ε2 given by:

ŵ := RN(bc);

f̂ := RN(ad − ŵ); e := RN(ŵ − bc);

r̂ := RN(f̂ + e);

f̂ = ad − ŵ + ε1
r̂ = f̂ + e + ε2

I Since e is exactly ŵ − bc , we have r̂ − r = ε1 + ε2.

I Furthermore, we can prove that |εi | 6 β
2
ulp(r) for i = 1, 2.

Proposition: |r̂ − r | 6 β ulp(r) 6 2βu |r |.

These bounds mean Kahan's algorithm is always highly accurate.



34

Further analysis [J., Louvet, Muller'13]

The key is an ulp-analysis of the error terms ε1 and ε2 given by:
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Further analysis [J., Louvet, Muller'13]

We can do better via a case analysis comparing |ε2| to 1
2
ulp(r):

Theorem:
I relative error |r̂ − r |/|r | 6 2u;

I the leading constant 2 is best possible.
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Certi�cate of optimality

This is an explicit input set parametrized by β and p such that

error

error bound
→ 1 as u → 0.

Example: for Kahan's algorithm for r = ad − bc :

a = b = βp−1 + 1

c = βp−1 + β
2
βp−2

d = 2βp−1 + β
2
βp−2

 ⇒ |r̂ − r |/|r |
2u

=
1

1 + 2u
= 1− 2u + O(u2).

I Optimality is asymptotic, but often OK in practice: for β = 2

and p = 11, the above example has relative error 1.999024...u.

I The certi�cate consists of sparse, symbolic �oating-point data,

which we can handle automatically. [J., Louvet, Muller, Plet]
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Summary

Floating-point arithmetic is

I speci�ed rigorously by IEEE 754,

I highly structured and much richer than the standard model.

Exploiting this structure leads to enhanced a priori analysis:

I optimal standard models for basic arithmetic operations,

I simpler and sharper Wilkinson-like bounds,

I proofs of nice behavior of some numerical kernels.

On-going research:

I consider directed roundings as well.

I take under�ow and over�ow into account.
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