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Context

Starting point:

How do numerical algorithms behave in finite precision arithmetic?

Typically,

» basic matrix computations: Ax = b, ...
» floating-point arithmetic as specified by IEEE 754.

Finite precision = rounding errors:

2.3456 x 5.4321 = 12.74153376
2.3456 / 5.4321 = 0.43180353822646858489...
2.3456 +5.4321 = 7.7777

What is the effect of all such errors on the computed solution x 7
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Rounding error analysis

Old and nontrivial question [von Neumann, Turing, Wilkinson, ...]
In this lecture, two approaches:

A priori analysis: —» this lecture
» Goal: bound on |x — x| /| x| for any input and format
» Tool: the many nice properties of floating-point
> |deal: readable, provably tight bound + short proof

A posteriori, automatic analysis: — Nathalie's lecture
» Goal: X and enclosure of X — x for given input and format
» Tool: interval arithmetic based on floating-point

> |deal: a narrow interval computed fast
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Floating-point arithmetic

» An approximation of arithmetic over R.

v

1940’s: first implementations [Zuse's computers].
1985-2008: full specification [IEEE 754 standard].

v

v

Today: IEEE arithmetic everywhere!

v

Although often considered as fuzzy, it is highly structured and
has many nice mathematical properties.

< How to exploit these properties for rigorous analyses?
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» base 3,
> precision p,

» exponent range defined by e, and e,.x.

Floats in C have 8 =2, p =24, and [€mn, €max] = [—126,127].
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Floating-point numbers

We assume
> enn = —00 and e,., = +00: unbounded exponent range,

» [ is even and p > 2.

Definition: The set | of floating-point numbers in base 3 and
precision p is

IF:z{O}U{I\/I-ﬁE . M.EcZ 6”‘1<|M|<6"}.



Floating-point numbers: other representations

» x e F\{0} = [|x|=m- 5%, m=(xex---x)g€[l,0).

p—1
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» Unit in the first place: ufp(x) = 8¢,
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» Unit roundoff: v = %ﬁlfp_



Floating-point numbers: other representations

» x e F\{0} = [|x|=m- 5%, m=(xex---x)g€[l,0).

p—1

» Three useful “units™
» Unit in the first place: ufp(x) = 8¢,
» Unit in the last place: ulp(x) = ge=P+1,
> Unit roundoff: u=181-F

» Alternative views, which display the structure of T very well:
» x € ulp(x)Z,
» |x| = (1+2ku)ufp(x), keN.

- Fﬁ[l,ﬁ):{1,1—1—2u,1+4u,...}.
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Floating-point numbers: some properties

F can be seen as a structured grid with many nice properties:

» Symmetry: feF = —fecl,;

> Auto-similarity: f €F, ecZ = f-p°€F;

> FN[L,8) = {1,1+2u,1—|—4u,...};

» FN[pe, Bt has (8 — 1)BP~! + 1 equally spaced elements,

with spacing equal to

2upBe;

» Neighborhood of 1 € F:

Ll 1—%“, 1,142u,1+4u,....

Hence 1 is 5 x closer to its predecessor than to its successor.
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Rounding functions

Round-to-nearest function RN : R — T such that

vt € R, IRN(t) — t| = min|f — t|,
feFr

with given tie-breaking rule.

REAL NUMBERS

0
I

v VY v

| | el | |

FLOATING-POINT
NUMBERS
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Rounding functions

Round-to-nearest function RN : R — T such that

vt € R, IRN(t) — t| = min|f — t|,
fel

with given tie-breaking rule.

REAL NUMBERS

0
I

» teF = RN(t)=t
» RN nondecreasing

DA AR A o » reasonable tie-breaking rule:
| | e | | > RN(_t):_RN(t)
ity > RN(t3%) = RN(1)3°, e € Z

11



Rounding functions

More generally, a rounding function o is any map from R to I such
that

teF = oft)=t; t<t = oft) <o(t).
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Rounding functions

More generally, a rounding function o is any map from R to I such
that

teF = oft)=t; t<t = oft) <o(t).
Adding just one extra constraint gives the usual directed roundings:
» Rounding down: RD(t) < t.

» Rounding up: t < RU(t).
» Rounding to zero: |RZ(t)| < |t].

Key property for interval arithmetic:

t¢F =  te [RD(t),RU(t)].

12
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Error bounds for real numbers

_ RN(t) —t] _ IRN(t) — ]

ZIOK it S l+u (1) := RN(E)[

Proof:

» Assume 1 < t < S8, so that

RN(t) € {1,1+2u,1+4u,...,8}.
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Error bounds for real numbers

_ RN(t) —t] _ IRN(t) — ]

ZIOK || S1+40 (1) := IRN()|

Proof:

» Assume 1 < t < S8, so that

RN(t) € {1,1+2u,1+4u,...,8}.

> Then |[RN(t) — ¢
> Dividing by RN(t)

<3 x2u=u.
> 1 gives directly the bound on E;.
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Error bounds for real numbers

Eift) = el S 1+u o(t) := IRN(?)]

Proof:

» Assume 1 < t < S8, so that
RN(t) € {1,1+2u,1+4u,...,8}.
» Then |RN(t) — t| <  x 2u=u.

> Dividing by RN(t) > 1 gives directly the bound on E;.
> If t > 1+ u then the bound E;(t) < i follows.

IRN(t) — t| o _|RN(t) — ¢|

~

13



Error bounds for real numbers

IRN(t) — t| o _|RN(t) — ¢|

Bl =—f— <13u (8= "RN@T S

Proof:

» Assume 1 < t < S8, so that

RN(t) € {1,1+2u,1+4u,...,8}.

v

Then |RN(t) — t| < 3 x 2u = u.
Dividing by RN(t) > 1 gives directly the bound on E;.

v

v

If t > 1+ u then the bound Ej(t) < T follows.

v

Else 1 < t<1+U:>RN()_I:El(t):%<liu' N
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Error bounds for real numbers

IRN(t) — t| o _|RN(t) — ¢|

Bl =—f— <13u (8= "RN@T S

Proof:

» Assume 1 < t < S8, so that

RN(t) € {1,1+2u,1+4u,...,8}.

v

Then |RN(t) — t| < 3 x 2u = u.
Dividing by RN(t) > 1 gives directly the bound on E;.

v

v

If t > 1+ u then the bound Ej(t) < T follows.

v

Else 1 < t<1+U:>RN()_I:El(t):%<liu' N

1+ sharp and well known [Dekker'71, Holm’80, Knuth'81-98],
but simpler bound u almost always used in practice.
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Error bounds for real numbers

» Example for the usual binary formats:

49 x107* if p=11 (half),

u 5.9x 1078 if p=24 (float),
1+u 1.1 x 1071® if p =53 (double),
9.6 x 1073 if p =113 (quad).

» For directed roundings, replace these bounds by 2u.

Conclusion: in all cases, the relative errors due to rounding can be
bounded by a tiny quantity which depends only on the format.

14



Correct rounding

This is the result of the composition of two functions: basic
operations performed exactly, and exact result then rounded:

x,yeF, op=d4,x,=+ = return 7 := RN(xop y).

op extends to square root and FMA (fused multiply add: xy + z).
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Correct rounding

This is the result of the composition of two functions: basic
operations performed exactly, and exact result then rounded:

x,yeF, op=d4,x,=+ = return 7 := RN(xop y).

op extends to square root and FMA (fused multiply add: xy + z).

» The error bounds on E; and E; yield two standard models:

?:(Xopy)X(1+($1), |51‘<1+Lu: u,

= (xopy) x 2] < w.

1+6]

15



Example

Let r = % be evaluated naively as r = RN(

RN(x+y)
2

).
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Example

Let r = *3¥ be evaluated naively as 7 = RN(M)-

» High relative accuracy is ensured:

RN(x + y)

2

X+y
2

= (1+61), |01] < uy,

1 +0)A+0),  |0] < u,

cr(1+e), le] < 2u.
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Example

Let r = *5¥ be evaluated naively as © = RN(M)-

» High relative accuracy is ensured:

RN(x + y)

r= 5 (14 61), |61] < w1,
+
=L+ +8), 15 <,
=:r(l+e), le| < 2u.

» We'd also like to have min(x, y) <7< max(x,y) ...
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Example

X Not always true:

=10, p=3 = RN(

RN (5.01 +5.03)

2

)ond

10

2

)-s.
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v True if 8 =2 or sign(x) # sign(y).
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Example

X Not always true:

=10, p=3 = RN( .

v True if 8 =2 or sign(x) # sign(y).

Proof for base two:
> 7= RN(BNGED) — RN(35Y).

2
» x< X<y = RN(x)

<
= x<r<y.

RN (5.01 + 5.03)) RN (

10
2

)-s

17



Example

X Not always true:

2 2

RN(5.01 + 5.03 10
B=10, p=3 = RN( ( )>—RN< >_5.

v True if 8 =2 or sign(x) # sign(y).

Proof for base two:
Fim RN(BNG2)) — R (33).
» x< P <y = RN(x)

<
= x<r<y. U

< Repair other cases using r = x + 5=, [Sterbenz’74, Boldo'15]

17



Other typical floating-point surprises

> =2, any precision p = 11—0 gF.
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Other typical floating-point surprises

> =2, any precision p = 11—0 gF.

> Loss of algebraic properties: commutativity of +, —, X is
preserved by correct rounding, but associativity and
distributivity are lost:

in general, o (o(x+y)+ z) # o(x+ o(y + z)).

» Catastrophic cancellation: 2 floating-point operations are
enough to produce a result with relative error > 1.

18



Catastrophic cancellation

For example, if x =1, y = % and z = —1 then
r:=RN(RN(x + y) + z) =0,

and, since r := x + y + z is nonzero, we obtain |[r — r|/|r| = 1.
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Catastrophic cancellation

For example, if x =1, y = % and z = —1 then
r:=RN(RN(x + y) + z) =0,

and, since r := x + y + z is nonzero, we obtain |[r — r|/|r| = 1.

Possible workarounds:

» Sorting the input (if possible)
> Rewriting:
a®> — b*> = (a+ b)(a— b).

» Compensation: compute the rounding errors, and use them

later in the algorithm in order to compensate for their effect.
[Kahan, Rump, ...]

19



Conditions for exact subtraction
Sterbenz’ lemma:

x,y €F,

[Sterbenz'74]

x—yekl.
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Conditions for exact subtraction
Sterbenz’ lemma: [Sterbenz'74]

x,y €F, <x <2y = x—yekl.

» Valid for any base 5.

» Applications: Cody and Waite's range reduction, Kahan's
accurate algorithms (discriminants, triangle area), ...

» Proof: [Hauser'96]
» assume 0 < y < x < 2y.
» ulp(y) < ulp(x) = x —y € B°Z with 5 = ulp(y).
» XY

: : x—y y
5 Is an integer such that 0 < o < wHoy < BP. ]

20



Representable error terms

Addition and multiplication:

x,y €F, ope{+,x} =

xopy —RN(xopy) €F.
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Representable error terms

Addition and multiplication:

x,y €F, ope{+,x} = xopy —RN(xopy) € F.

Division and square root:
x —y RN(x/y) € F, x—RN(\/})zeF

» Noted quite early. [Dekker'71, Pichat'76, Bohlender et al.’91]
» RN required only for ADD and SQRT. [Boldo & Daumas'03]

FMA: its error is the sum of two floats. [Boldo & Muller'11]

21



Error-free transformations (EFT)
Floating-point algorithms for computing such error terms exactly:

» x +y — RN(x + y) in 6 additions [Mgller'65, Knuth] and not less
[Kornerup, Lefévre, Louvet, Muller'12]
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» x +y — RN(x + y) in 6 additions [Mgller'65, Knuth] and not less
[Kornerup, Lefévre, Louvet, Muller'12]
» xy — RN(xy) can be obtained

» in 17 + and x [Dekker'71, Boldo’06]
» in only 2 ops if an FMA is available:

Z:=RN(xy) = xy—Zz=FMA(x,y,—2).
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Error-free transformations (EFT)
Floating-point algorithms for computing such error terms exactly:

» x +y — RN(x + y) in 6 additions [Mgller'65, Knuth] and not less
[Kornerup, Lefévre, Louvet, Muller'12]

» xy — RN(xy) can be obtained
» in 17 + and x [Dekker'71, Boldo’06]
» in only 2 ops if an FMA is available:

z:=RN(xy) = xy—Zz=FMA(x,y,—2).
» Similar FMA-based EFT for DIV, SQRT ... and FMA.
EFT are key for extended precision algorithms: error compensation
[Kahan'65, ..., Higham'96, Ogita, Rump, Oishi’04+, Graillat, Langlois,

Louvet'05+, ...], floating-point expansions [Priest'91, Shewchuk'97,
Joldes, Muller, Popescu’'14+].

22



Optimal relative error bounds

When t can be any real number, Ei(t) < 3 and Ex(t) < u are
best possible:

t:=14+u = RN(t)islorl+2u = [t—RN(t)=u.
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Optimal relative error bounds

When t can be any real number, Ei(t) < 3 and Ex(t) < u are
best possible:

t:=14+u = RN(t)islorl+2u = [t—RN(t)=u.

Hence
u

El(t): 1+u

and, if rounding ties “to even”, RN(t) = 1 and thus

E2(t) = u.

These are examples of optimal bounds:
» valid for all (t,RN) with t of a certain type;
> attained for some (t, RN) with t parametrized by 5 and p.

23



Can we do better when t = xopy and x,y € F?
This depends on op and, sometimes, on 3 and p. [J. & Rump'14]
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Can we do better when t = xopy and x,y € F?
This depends on op and, sometimes, on 3 and p. [J. & Rump'14]

t optimal bound on E;(t) optimal bound on E;(t)
xty s u
xy e ) u (%)
e E8>2 u o ifB>2
x/y ,
_2 . .
u—2u? fB=2 Troaez fB=2
VX 1-— \/ﬁ V1i+2u—1

(%) iff 5> 2 or 2° 4+ 1 is not a Fermat prime.

— Two standard models for each arithmetic operation.

— Application: sharper bounds and/or much simpler proofs.

24



A priori analysis
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Classical approach: Wilkinson's analysis

» This is the most common way to guarantee a priori that the
computed solution X has some kind of numerical quality:

» the forward error |x — x| is 'small’,
» the backward error |AA| such that (A+ AA)X = b is 'small".
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» This is the most common way to guarantee a priori that the
computed solution X has some kind of numerical quality:
» the forward error |x — X] is "small’,

» the backward error |AA| such that (A+ AA)X = b is 'small".

» Developed by Wilkinson in the 1950s and 1960s.

> Relies almost exclusively on the first standard model:

F=(xopy)(1+4), Il <u.
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Classical approach: Wilkinson's analysis

» This is the most common way to guarantee a priori that the
computed solution X has some kind of numerical quality:

» the forward error |x — x| is 'small’,
» the backward error |AA| such that (A+ AA)X = b is 'small".

» Developed by Wilkinson in the 1950s and 1960s.

> Relies almost exclusively on the first standard model:
F=(xopy)1+4), |5 <u.

» Eminently powerful:
see Higham’s book
Accuracy and Stability of
Numerical Algorithms (SIAM).
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Example of analysis: a?> — b?
Applying the standard model to each operation gives:
7 = (RN(a?) — RN(b%))(1 + J3)
= (P(1+6)—P(L+0))(1+63), 6] < w.
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Example of analysis: a?> — b?
Applying the standard model to each operation gives:

7 = (RN(a?) — RN(b%))(1 + J3)
= (1 +0) = P(1+6)(L1+0), 6] <.

= F—r=a%(d1+ 03 + 6163) — b?(02 + 03 + 0203).

27



Example of analysis: a?> — b?
Applying the standard model to each operation gives:

7 = (RN(a?) — RN(b%))(1 + J3)

= (2(1+61) = PA(1+8))(1+03), |0 < wn.

= F—r=a%(d1+ 03 + 6163) — b?(02 + 03 + 0203).

= |7 — r| < 2u(a®+b?).
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Example of analysis: a?> — b?
Applying the standard model to each operation gives:

7 = (RN(a?) — RN(b%))(1 + J3)
= (1 +0) = P(1+6)(L1+0), 6] <.

= F—r=a%(d1+ 03 + 6163) — b?(02 + 03 + 0203).
= [F—r| <2u (7).

71| 2% + b2

7] |a% — b?|

< 2u x C, condition number C .= ————.
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Example of analysis: a?> — b?
Applying the standard model to each operation gives:

7 = (RN(a?) — RN(b%))(1 + J3)
= (P(14+061) = bP(1+0))(1+03), |0 <u

= F—r=a%(d1+ 03 + 6163) — b?(02 + 03 + 0203).
= [F—r| <2u (7).

-~ b2
[F=rl < 2u x C, condition number C := 32 + >
1] |a* — b2

Bound easy to derive and to interpret:
» If C = O(1) then relative error in O(u): highly accurate!

» If C ~ 1/u then relative error upper bounded by ~ 1: it could
be that catastrophic cancellation occurs.

27



Example of analysis: (a+ b)(a — b)

7 :=RN (RN(a +b) - RN(a — b))

= (a+b)(a—b)-(1+01)(1+2)(1+ ds),

"= o1 <3

7]

Always highly accurate!

’(5,‘ < uy.

28



Floating-point summation

Given xi,...,x, € F, evaluate their sum in any order.

Classical analysis [Wilkinson'60]:
> Apply the standard model n — 1 times.

» Deduce that the computed value 5 € T satisfies

n n
-5 <o Xl a=@rurtoL
i=1 i=1

29



Floating-point summation

Given xi,...,x, € F, evaluate their sum in any order.

Classical analysis [Wilkinson'60]:
> Apply the standard model n — 1 times.
» Deduce that the computed value s € I satisfies

- <okl a=aearton

i=1

v Easy to derive, valid for any order, asymptotically optimal:
error
error bound

—1lasu—0.
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Floating-point summation

Given xi,...,x, € F, evaluate their sum in any order.

Classical analysis [Wilkinson'60]:
> Apply the standard model n — 1 times.

» Deduce that the computed value 5 € T satisfies

n n
-5 <o Xl a=@rurtoL
i=1 i=1

v Easy to derive, valid for any order, asymptotically optimal:

error
error bound —lasu—0.

X But, even with u replaced by 1, a = (n—1)u + Oo(u?),
which hides a constant. So, classically bounded as

lu < 1. [Higham'96]
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A simpler, O(u?)-free bound

Theorem [Rump'12]

For recursive summation, one can take v = (n —1)u.
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A simpler, O(u?)-free bound

Theorem [Rump'12]
For recursive summation, one can take v = (n —1)u.
To prove this,

» Don'’t use just the (refined) standard model

u

IRN(x +y) = (x +¥)| < 5 1x + ¥l (1)
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A simpler, O(u?)-free bound

Theorem [Rump'12]

For recursive summation, one can take v = (n —1)u.

To prove this,
» Don'’t use just the (refined) standard model

IRN(x +y) = (x + ¥)| < mglx + vl (1)
» But combine it with the lower-level property

f—(x+y)l, VfeF,

[RN(x +y) = (x +y)| <
< ¥ (2)

|
min{|x|, |y
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A simpler, O(u?)-free bound

Theorem [Rump'12]

For recursive summation, one can take v = (n —1)u.

To prove this,
» Don'’t use just the (refined) standard model

[RN(x +y) = (x + ¥)I < &5 Ix +yl. (1)
» But combine it with the lower-level property

RN(x +y) = (x+y)| <lf =(x+y)l, VfeFT,
< mi h (2)

min{|x|, |y

» Conclude by induction on n with a clever case-distinction
comparing |x,| to u->;_, |xi|, and using either (1) or (2).

30



Wilkinson’s bounds revisited

Problem Classical «

summation (n—1)u+ O(u?)

New a

(n—1)u

Ref.

[1]
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Wilkinson’s bounds revisited

Problem Classical o
summation (n—1)u+ O(u?)
dot prod., mat. mul. nu+ O(u?)

Euclidean norm (2 +1)u+ O(v?)
Tx=b A=1LU nu + O(u?)

A=R'R (n+1)u+ O(u?)

x" (recursive, 8 =2) (n—1)u+ O(v?)

product xi1x2 - - - Xn (n—1u+ O(u?)
poly. eval. (Horner) 2nu + O(u?)

(x)if n<c-u/2

New o
(n—1)u
(3 +1u
(n+1)u
(n—1)u
(n—1)u

2nu

(%)

Ref.

[1]
[1]
2]
(2]
2]
(3]
[4]
[4]

[1]: with Rump'13; [2]: with Rump'1l4; [3]: Graillat, Lefévre, Muller'14;

[4]: with Biinger and Rump’14.
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Kahan'’s algorithm for ad — bc

Kahan's algorithm uses the FMA to evaluate det {j

W
f:=RN(ad — w); e:=RN(w — bc);
r:

= RN(f + e);

d

b} = ad — bc:
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Kahan'’s algorithm for ad — bc

Kahan's algorithm uses the FMA to evaluate det {j Z} = ad — bc:

w = RN(bc);
f:=RN(ad — w); e:=RN(w — bc);
r:=RN(f + e);

» The operation ad — bc is not in IEEE 754, but very common:

» complex arithmetic,
» discriminant of a quadratic equation,
» robust orientation predicates using tests like 'ad — bc > €?’

» If evaluated naively, ad — bc leads to highly inaccurate results

f_
| | ‘r] can be of the order of u™! > 1.
r
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Kahan'’s algorithm for ad — bc

» Analysis in the standard model [Higham’96]:

< 2u (14 55,

= high relative accuracy as long as u|bc| % 2|r|.
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Kahan'’s algorithm for ad — bc

» Analysis in the standard model [Higham’96]:

< 2u (14 55,

= high relative accuracy as long as u|bc| % 2|r|.

» When u|bc| > 2|r|, the error bound can be > 1 and does not
even allow to conclude that sign(7) = sign(r).
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Kahan'’s algorithm for ad — bc

» Analysis in the standard model [Higham’96]:

< 2u (14 55,

= high relative accuracy as long as u|bc| % 2|r|.

» When u|bc| > 2|r|, the error bound can be > 1 and does not
even allow to conclude that sign(7) = sign(r).

In fact, Kahan's algorithm is always highly accurate:

X the standard model alone fails to predict this;

X misinterpreting bounds = dismissing good algorithms.
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Further analysis [J.. Louvet, Muller'13]

The key is an ulp-analysis of the error terms ¢; and ¢, given by:

w := RN(bc);
f:=RN(ad — w); e:=RN(w — bc); =ad—-w+e
r:=RN(f + e); r=f+e+e

» Since e is exactly w — bc, we have F — r = ¢1 + 6.
» Furthermore, we can prove that |¢;| < gulp(r) for i =1,2.

Proposition: |F— r| < Bulp(r) < 28u]r|.
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Further analysis [J.. Louvet, Muller'13]

The key is an ulp-analysis of the error terms ¢; and ¢, given by:

w := RN(bc);
f:=RN(ad — w); e:=RN(w — bc); =ad—-w+e
r:=RN(f + e); r=f+e+e

» Since e is exactly w — bc, we have F — r = ¢1 + 6.
» Furthermore, we can prove that |¢;| < gulp(r) for i =1,2.

Proposition: |F— r| < Bulp(r) < 28u]r|.

These bounds mean Kahan's algorithm is always highly accurate.

34



Further analysis [J.. Louvet, Muller'13]

We can do better via a case analysis comparing |ez| to Sulp(r):

Theorem:
> relative error |[F—r|/|r| < 2u;
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Further analysis [J.. Louvet, Muller'13]

We can do better via a case analysis comparing |ez| to Sulp(r):

Theorem:
> relative error |[F—r|/|r| < 2u;

> the leading constant 2 is best possible.
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Certificate of optimality

This is an explicit input set parametrized by  and p such that

error
—_— 1 as u—0.
error bound

36



Certificate of optimality

This is an explicit input set parametrized by  and p such that

error

—_— 1 as u—0.
error bound

Example: for Kahan's algorithm for r = ad — bc:
a=b=pr"14+1

. r— 1
— gp-1 4 Bp-2 |I’ r|/|r| _ ~1-92 o).
< + 3 - 2u 1+42u u+0()

__npp-1 B ap—2
d= 2“{3’) + 5/3’7
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Certificate of optimality

This is an explicit input set parametrized by  and p such that

error
—_— 1 as u—0.
error bound

Example: for Kahan's algorithm for r = ad — bc:
a=b=pr"14+1

c=prt 4 Bpr2 =

|r—r|/Ir| 1 >
= = 172 O .
2u 14 2u u+ O(u)

d=2pr"1+ 5pr2

» Optimality is asymptotic, but often OK in practice: for 5 = 2
and p = 11, the above example has relative error 1.999024...u.

» The certificate consists of sparse, symbolic floating-point data,
which we can handle automatically. [J., Louvet, Muller, Plet]
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Conclusion
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Summary

Floating-point arithmetic is
» specified rigorously by IEEE 754,

> highly structured and much richer than the standard model.

Exploiting this structure leads to enhanced a priori analysis:
» optimal standard models for basic arithmetic operations,
» simpler and sharper Wilkinson-like bounds,

» proofs of nice behavior of some numerical kernels.
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Summary

Floating-point arithmetic is
» specified rigorously by IEEE 754,

> highly structured and much richer than the standard model.

Exploiting this structure leads to enhanced a priori analysis:
» optimal standard models for basic arithmetic operations,
» simpler and sharper Wilkinson-like bounds,

» proofs of nice behavior of some numerical kernels.

On-going research:
» consider directed roundings as well.

» take underflow and overflow into account.
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