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Cellular Automaton of Dimension d

m Q : alphabet

m U C Z9: finite neighborhood

m f: QY — Q: local transition map

m a global map: F: Q% — Q%° defined by

vie 29 F(x)(i) = f(Xi+u)




1D Example: XOR

md=1,Q=1{0,1},U={-1,0}, f(a,b) = a+ b mod 2:

F(x)(i) = f(x|i+U)







2D Examples



Hedlund’s Theorem
Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that
commute with translations.



Hedlund’s Theorem
Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that
commute with translations.

Proof:
F(x)(i) = f(Xji+u)




Hedlund’s Theorem
Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that
commute with translations.

Proof:
F(x)(i) = f(Xji+u)

m = translation invariant



Hedlund’s Theorem
Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that
commute with translations.

Proof:
F(x)(i) = f(Xji+u)

m = translation invariant and continuous



Hedlund’s Theorem
Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that
commute with translations.

Proof:

m = translation invariant and continuous
m < uniform continuity: VxVe3d = VedoVx



Hedlund’s Theorem
Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that
commute with translations.

Proof:
F(x)(i) = f(Xji+u)

m = translation invariant and continuous
m < uniform continuity: VxVe3d = VedoVx
+ translation invariance
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Reversibility

m F global map of a CA
m F can be bijective (one-to-one + onto)

F(x) = F(y) = x = y and F(Q%") = Q%

m in this case, F':
El commutes with shift maps
B is continuous (F continuous bijection on a compact)

m therefore F~' is a CA by Hedlund’s theorem!

Question
What is the neighborhood of F~1?
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Reversibility
Particular cases
m F periodic
Invx : F"(x) = x

m involution
F=F"

m product of two involutions = time symmetry
F = G o H with G and H involutions

& F = Go F~ 1o G with Ginvolution
H

~
~N
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Time Symmetry

Physical intuition

m change arrow of time by an involution

[V -V

Ay 2 B

Kl run law of physics during time t

H apply involution /

H run law of physics during time t

B apply involution / : we are back to initial state!
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Time Symmetry

m any permutation = of a finite set E is time symmetric

Kl decomposition into cycles : 7(x) = x + 1 mod n
H then 7 = My o M,_1 where Ma(x) = a— x mod n

m non-periodic example: Margolus Billiard

DEMO...

Question

Can we decide whether a CA is reversible? periodic? time
symmetric?
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Periodic configurations

i € 29, x is i-periodic if x(j) = x(j + i) for all j
e;=(1,0,...,0),...,e4 =(0,...,0,1)

Pn = {x : xis nek-periodic for all k}

P =UnP,

Fany CA: F(P)C P

P is dense in Q%°

Fp=Gp=F=G

F|p surjective = F surjective

F1DCA: F(x)=yand y € P= 3x’ € P with F(x/)
for 1D CA: F surjective < Fp surjective

y



Periodic configurations
m i € 29, xis i-periodic if x(j) = x(j + i) for all j

me =(1,0,...,0),...,e4 =(0,...,0,1)

m P, = {x: xis neg-periodic for all k}

mP=UyP,

m Fany CA: F(P)CP

m Pisdense in Q%

mFAp=CGp=F=G

m fp surjective = F surjective
mFIDCA:F(x)=yandy e P=3x' € Pwith F(x') =y
m for 1D CA: F surjective < Fp surjective

Open problem

Is there a 2D surjective CA F with Fp not surjective?
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Surjunctivity

Theorem
If a d-dimensional CA F is injective then it is surjective.

Proof:
m F(Pn) C P,and P, finite
m Fp, injective = Fp, surjective
m P C Img(F) and P dense = F surjective

m definition of a CA on any group G

El configurations Q¢
B CA F: Q% — Q% with F(x)(i) = f(Xi;u)

Open problem (Gottschalk 1973)

3 group G with some injective CA which is not surjective?
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m nilpotency: 3y, Vx, 3t : Fi(x) = yo
m periodic nilpotency: 3y, € P,Vx € P,3t: Fi(x) = yp
Question

m can we decide nilpotency? periodic nilpotency?
m are nilpotency and periodic nilpotency equivalent?
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Basic Construction

m given atileset T = {rq,..., 7}

m define a 2D CA F on alphabet Q = T U {e} by

. x(i) if valid T-pattern around i
F(x)(i) = {
e else
If T can tile the plane If T cannot tile the plane
periodically periodically

m 3x € PN TZ with F(x) = x m Vx € P e appears in F(x)
mF(e)=e mVxeP3t:Fl(x)="=e

m F is not periodic nilpotent m F is periodic nilpotent
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Kl there are aperiodic tile sets (Berger, 64)

Theorem
For 2D CA, nilpotency # periodic nilpotency

H the domino problem is undecidable (Berger, 64)

Theorem
For 2D CA, nilpotency is undecidable

H the periodic domino problem is undecidable
(Gurevich-Koryakov,72)

Theorem
For 2D CA, periodic nilpotency is undecidable
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Determinism

same story with NE-deterministic tile sets...

Kl there are aperiodic NE-deterministic tile sets (Kari, 91)

Theorem
For 1D CA, nilpotency # periodic nilpotency

B the deterministic domino problem is undecidable (Kari, 91)
Theorem
For 1D CA, nilpotency is undecidable
HE the deterministic periodic domino problem is undecidable
(Mazoyer-Rapaport,98)
Theorem
For 1D CA, periodic nilpotency is undecidable
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1D Sofic Subshifts
m graph G = (V, E, \) with edge labeling A : E — Q

DSOS

1
m 3 : labeled bi-infinite paths

...01110110--- ¢ ¢
...011011110--- € T4

Theorem

m given G it is decidable whether g = ()
m given G and @G it is decidable whether X5 =Y &
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1D Sofic Subshifts and CAs

m suppose U ={-1,0,1}
m The subshift F(Q?) is sofic

N . \Q}@?

f(a,b,c)=a+ b+ cmod?2

] ZH = {(X,}/) : F(X) = F(y)} (abusing notation) is sofic

Uy, U (U2a V2) >
vir 2 it f(uy, up, uz) = f(vq, v, v3)
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1D CA and first-order theory

m surjectivity: Vy, 3x: F(x) =y
m injectivity: Vx, x": F(x) = F(X') = x =X

Theorem (Amoroso-Patt,72)
Injectivity(=reversibility) and surjectivity are decidable in 1D.
m proof: previous slide
F(Q) = Q7
{(x,y): F(x) = F(»)} = {(x,x) : x € @%}

m if F reversible, what is the neighborhood of F~1?

m linear in the neighborhood of F (Czeizler-Kari,05).

m any first-order property is decidable (Sutner,07)
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Directed Tiles and Snakes

m 7T atile set

4 )

m orientation on tiles D : T — {(£1,0), (0, 1)}
N
= W

m directed snake: path following arrows and respecting
colors

ms,eT
B Dni1 = Pn+ 5(Sn)
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m decision problem: given a directed tile set (T, D), does it
admit an infinite directed snake?



Infinite Directed Snake Problem

m decision problem: given a directed tile set (T, D), does it
admit an infinite directed snake?

Theorem (Kari, 1994)

The infinite directed snake problem is undecidable
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A Space Filling Snake Tileset

m idea 1: Hilbert curve as a substitution o
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m idea 1: Hilbert curve as a substitution o
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A Space Filling Snake Tileset

m idea 2: self-similar structure to execute o

NWq NEq
NWq NEq
W, q E,q o
SWy SEq
SWy SEq

m can be done with Robinson tiles but many details to check!
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A Space Filling Snake Tileset

m final touch at squares of level 1 and 2

m idea 3: snake = correct tiling
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Infinite Snake Problem Undecidable

Proof:
El take a space filling directed tile set (T, D)
m T tiles the plane and (T, D) admits infinite snakes

m any infinite snake of (T, D) covers N x N squares
for infinitely many N

H given atile set T/, construct 7" =T x T’
m constraints of T and T’ on respective layer
m direction given by D on T-layer

H if T’ tiles the plane then T” admits an infinite snake

A if T’ does not tile the plane
B suppose s is an infinite snake of T”
m induces an infinite snake of T
m must cover arbitrarily large N x N squares
m so arbitrary large N x N squares are tiled by T’
m by compacity 7’ admits a tiling of the plane: contradiction!
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Consequences

m given a directed tile set T, D, define Fon T x {0, 1}:

El F computes 1D XOR CA along snakes
H F does nothing when tiling error in the neighborhood

. X if T-layer invalid at i,
F(x)(i) = :
(ri,b) else with b= b + bﬁ(xi) mod 2,
3 infinite snake no infinite snake
000~ 000 - m F periodic on each snake

..111.../

m global bound on snakes
m F periodic

m F is not reversible m F time symmetric
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Undecidability!

Theorem (Kari 94 + Gajardo-Kari-Moreira 12)

For 2D CA each of reversibility/periodicity/time-symmetry is
undecidable

Theorem (Kari 94)
Surjectivity is undecidable for 2D CA.

Theorem (Kari-Ollinger 08)
Periodicity is undecidable for 1D CA

Open

Is time symmetry decidable in 1D?



This is Not the End

m from 2D SFT to 1D CA: is it about determinism?

m deterministic chaos / topological dynamics

m ergodic dynamics / stochastic CA

m intrinsic simulations and universality

m CA as a parallel computational model

m links between blue and red
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