Pavages et automates cellulaires Partie II École Jeunes Chercheurs en Informatique Mathématique

N. Aubrun, G. Theyssier

Institut de Mathématiques de Marseille

Lyon, janvier 2016

Forewords

not a general course on cellular automata

Forewords

not a general course on cellular automata

recall from part I: space of configuration is compact!

Table of contents

- **1** Cellular Automata Basics
- 2 Applications of Domino Problem
- **3** A Parenthesis of Decidability
- **4** Snake Tilings and Applications

Table of contents

1 Cellular Automata Basics

2 Applications of Domino Problem

3 A Parenthesis of Decidability

4 Snake Tilings and Applications

Cellular Automaton of Dimension d

- Q: alphabet
- $\blacksquare \mathbb{U} \subseteq \mathbb{Z}^d$: finite neighborhood
- $f: Q^{\mathbb{U}} \to Q$: local transition map

Cellular Automaton of Dimension d

- Q: alphabet
- $\blacksquare \mathbb{U} \subseteq \mathbb{Z}^d$: finite neighborhood
- $f: Q^{\mathbb{U}} \to Q$: local transition map
- a global map: $F: Q^{\mathbb{Z}^d} \to Q^{\mathbb{Z}^d}$ defined by

$$\forall \mathbf{i} \in \mathbb{Z}^d, F(\mathbf{x})(\mathbf{i}) = f(\mathbf{x}_{|\mathbf{i}+\mathbb{U}})$$

1D Example: XOR

■ $d = 1, Q = \{0, 1\}, U = \{-1, 0\}, f(a, b) = a + b \mod 2$:

$$F(x)(\mathbf{i}) = f(x_{|\mathbf{i}+\mathbb{U}})$$

DEMO...

Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that commute with translations.

Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that commute with translations.

Proof:

$$F(x)(\mathbf{i}) = f(x_{|\mathbf{i}+\mathbb{U}})$$

Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that commute with translations.

Proof:

$$F(x)(\mathbf{i}) = f(x_{|\mathbf{i}+\mathbb{U}})$$

■ ⇒ translation invariant

Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that commute with translations.

Proof:

$$F(x)(\mathbf{i}) = f(x_{|\mathbf{i}+\mathbb{U}})$$

 \blacksquare \Rightarrow translation invariant and continuous

Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that commute with translations.

Proof:

- \blacksquare \Rightarrow translation invariant and continuous
- $\blacksquare \leftarrow \text{uniform continuity: } \forall x \forall \epsilon \exists \delta \Rightarrow \forall \epsilon \exists \delta \forall x$

Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that commute with translations.

Proof:

$$F(x)(\mathbf{i}) = f(x_{|\mathbf{i}+\mathbb{U}})$$

- \blacksquare \Rightarrow translation invariant and continuous
- $\blacksquare \leftarrow \text{uniform continuity: } \forall x \forall \epsilon \exists \delta \Rightarrow \forall \epsilon \exists \delta \forall x$
 - + translation invariance

■ *F* global map of a CA

■ *F* can be bijective (one-to-one + onto)

$$F(x) = F(y) \Rightarrow x = y$$
 and $F(Q^{\mathbb{Z}^d}) = Q^{\mathbb{Z}^d}$

F global map of a CA

■ *F* can be bijective (one-to-one + onto)

$$F(x) = F(y) \Rightarrow x = y$$
 and $F(Q^{\mathbb{Z}^d}) = Q^{\mathbb{Z}^d}$

In this case, F^{-1} :

2 is continuous (F continuous bijection on a compact)

F global map of a CA

F can be bijective (one-to-one + onto)

$$F(x) = F(y) \Rightarrow x = y$$
 and $F(Q^{\mathbb{Z}^d}) = Q^{\mathbb{Z}^d}$

In this case, F^{-1} :

2 is continuous (F continuous bijection on a compact)

therefore F^{-1} is a CA by Hedlund's theorem!

F global map of a CA

F can be bijective (one-to-one + onto)

$$F(x) = F(y) \Rightarrow x = y$$
 and $F(Q^{\mathbb{Z}^d}) = Q^{\mathbb{Z}^d}$

■ in this case, F⁻¹:

1 commutes with shift maps

2 is continuous (F continuous bijection on a compact)

■ therefore *F*⁻¹ is a CA by Hedlund's theorem!

Question

What is the neighborhood of F^{-1} ?

Particular cases

F periodic

 $\exists n \forall x : F^n(x) = x$

Particular cases

F periodic

$$\exists n \forall x : F^n(x) = x$$

involution

$$F = F^{-1}$$

Particular cases

F periodic

$$\exists n \forall x : F^n(x) = x$$

involution

$$F = F^{-1}$$

product of two involutions

 $F = G \circ H$ with G and H involutions

Particular cases

F periodic

$$\exists n \forall x : F^n(x) = x$$

involution

$$F = F^{-1}$$

■ product of two involutions = time symmetry $F = G \circ H$ with G and H involutions $\Leftrightarrow F = G \circ \underbrace{F^{-1} \circ G}_{H}$ with G involution

Particular cases

F periodic

$$\exists n \forall x : F^n(x) = x$$

involution

$$F = F^{-1}$$

product of two involutions = time symmetry

$F = G \circ H \text{ with } G \text{ and } H \text{ involutions}$ $\Leftrightarrow F = G \circ \underbrace{F^{-1} \circ G}_{H} \text{ with } G \text{ involution}$

change arrow of time by an involution

change arrow of time by an involution

- 1 run law of physics during time t
- 2 apply involution I
- 3 run law of physics during time t
- 4 apply involution *I*

change arrow of time by an involution

- 1 run law of physics during time t
- 2 apply involution I
- 3 run law of physics during time t
- 4 apply involution / : we are back to initial state!

any permutation π of a finite set *E* is time symmetric

Time Symmetry

any permutation π of a finite set *E* is time symmetric

1 decomposition into cycles : $\pi(x) = x + 1 \mod n$

2 then
$$\pi = M_0 \circ M_{n-1}$$
 where $M_a(x) = a - x \mod n$

Time Symmetry

any permutation π of a finite set *E* is time symmetric decomposition into cycles : π(x) = x + 1 mod n then π = M₀ ∘ M_{n-1} where M_a(x) = a - x mod n

non-periodic example: Margolus Billiard

Time Symmetry

any permutation π of a finite set *E* is time symmetric decomposition into cycles : π(x) = x + 1 mod n then π = M₀ ∘ M_{n-1} where M_a(x) = a - x mod n

non-periodic example: Margolus Billiard

DEMO...

Question

Can we decide whether a CA is reversible? periodic? time symmetric?

Periodic configurations

• $\mathbf{i} \in \mathbb{Z}^d$, x is i-periodic if $x(\mathbf{j}) = x(\mathbf{j} + \mathbf{i})$ for all \mathbf{j} **e**₁ = $(1, 0, ..., 0), ..., e_d = (0, ..., 0, 1)$ $P_n = \{x : x \text{ is } n\mathbf{e_k}\text{-periodic for all } k\}$ $P = \cup_n P_n$

Periodic configurations

Periodic configurations

i $\in \mathbb{Z}^d$, x is **i**-periodic if $x(\mathbf{j}) = x(\mathbf{j} + \mathbf{i})$ for all **j e**₁ = $(1, 0, ..., 0), ..., e_d = (0, ..., 0, 1)$ $P_n = \{x : x \text{ is } n\mathbf{e_k}\text{-periodic for all } k\}$ $P = \cup_n P_n$ F any CA: $F(P) \subseteq P$ P is dense in $Q^{\mathbb{Z}^d}$
i $\in \mathbb{Z}^d$, x is **i**-periodic if $x(\mathbf{j}) = x(\mathbf{j} + \mathbf{i})$ for all **j e**₁ = $(1, 0, ..., 0), ..., e_d = (0, ..., 0, 1)$ $P_n = \{x : x \text{ is } n\mathbf{e_k}\text{-periodic for all } k\}$ $P = \cup_n P_n$ F any CA: $F(P) \subseteq P$ P is dense in $Q^{\mathbb{Z}^d}$ $F_{|P} = G_{|P} \Rightarrow F = G$

i $\in \mathbb{Z}^d$, x is **i**-periodic if $x(\mathbf{j}) = x(\mathbf{j} + \mathbf{i})$ for all **j e**₁ = $(1, 0, ..., 0), ..., e_d = (0, ..., 0, 1)$ $P_n = \{x : x \text{ is } n\mathbf{e_k}\text{-periodic for all } k\}$ $\blacksquare P = \cup_n P_n$ F any CA: $F(P) \subseteq P$ P is dense in $Q^{\mathbb{Z}^d}$ $\blacksquare F_{|P} = G_{|P} \Rightarrow F = G$ • $F_{|P}$ surjective \Rightarrow *F* surjective

i $\in \mathbb{Z}^d$, x is **i**-periodic if $x(\mathbf{j}) = x(\mathbf{j} + \mathbf{i})$ for all **j e**₁ = $(1, 0, ..., 0), ..., e_d = (0, ..., 0, 1)$ $P_n = \{x : x \text{ is } n\mathbf{e_k} \text{-periodic for all } k\}$ $\square P = \cup_n P_n$ F any CA: $F(P) \subseteq P$ $\square P$ is dense in $Q^{\mathbb{Z}^d}$ $\blacksquare F_{|P} = G_{|P} \Rightarrow F = G$ • F_{IP} surjective \Rightarrow *F* surjective F 1D CA: F(x) = y and $y \in P \Rightarrow \exists x' \in P$ with F(x') = y

i $\in \mathbb{Z}^d$, x is i-periodic if x(j) = x(j+i) for all j **e**₁ = $(1, 0, ..., 0), ..., e_d = (0, ..., 0, 1)$ $P_n = \{x : x \text{ is } n\mathbf{e_k}\text{-periodic for all } k\}$ $\blacksquare P = \cup_n P_n$ F any CA: $F(P) \subseteq P$ $\square P$ is dense in $Q^{\mathbb{Z}^d}$ $\blacksquare F_{|P} = G_{|P} \Rightarrow F = G$ • $F_{|P}$ surjective \Rightarrow *F* surjective F 1D CA: F(x) = y and $y \in P \Rightarrow \exists x' \in P$ with F(x') = yfor 1D CA: F surjective $\Leftrightarrow F_{|P}$ surjective

i $\in \mathbb{Z}^d$, x is i-periodic if x(j) = x(j + i) for all j • $\mathbf{e_1} = (1, 0, \dots, 0), \dots, \mathbf{e_d} = (0, \dots, 0, 1)$ $P_n = \{x : x \text{ is } n\mathbf{e_k} \text{-periodic for all } k\}$ $\square P = \cup_n P_n$ F any CA: $F(P) \subseteq P$ P is dense in $Q^{\mathbb{Z}^d}$ $\blacksquare F_{|P} = G_{|P} \Rightarrow F = G$ • $F_{|P}$ surjective \Rightarrow *F* surjective F 1D CA: F(x) = y and $y \in P \Rightarrow \exists x' \in P$ with F(x') = y■ for 1D CA: F surjective \Leftrightarrow $F_{|P}$ surjective

Open problem

Is there a 2D surjective CA F with $F_{|P}$ not surjective?

Theorem

If a *d*-dimensional CA *F* is injective then it is surjective.

Theorem

If a *d*-dimensional CA *F* is injective then it is surjective.

Proof:

- $F(P_n) \subseteq P_n$ and P_n finite
- $F_{|P_n}$ injective $\Rightarrow F_{|P_n}$ surjective
- $P \subseteq Img(F)$ and P dense \Rightarrow F surjective

Theorem

If a *d*-dimensional CA *F* is injective then it is surjective.

Proof:

•
$$F(P_n) \subseteq P_n$$
 and P_n finite

•
$$F_{|P_n}$$
 injective $\Rightarrow F_{|P_n}$ surjective

•
$$P \subseteq Img(F)$$
 and P dense \Rightarrow F surjective

■ definition of a CA on any group G

2 CA
$$F: Q^G \to Q^G$$
 with $F(x)(\mathbf{i}) = f(x_{|\mathbf{i}+\mathbb{U}})$

Theorem

If a *d*-dimensional CA *F* is injective then it is surjective.

Proof:

•
$$F(P_n) \subseteq P_n$$
 and P_n finite

•
$$F_{|P_n}$$
 injective $\Rightarrow F_{|P_n}$ surjective

• $P \subseteq Img(F)$ and P dense \Rightarrow F surjective

definition of a CA on any group G

2 CA
$$F: Q^G \to Q^G$$
 with $F(x)(\mathbf{i}) = f(x_{|\mathbf{i}+\mathbb{U}})$

Open problem (Gottschalk 1973)

 \exists group *G* with some injective CA which is not surjective?

nilpotency: $\exists y_0, \forall x, \exists t : F^t(x) = y_0$

- **nilpotency:** $\exists y_0, \forall x, \exists t : F^t(x) = y_0$
- **periodic nilpotency:** $\exists y_0 \in P, \forall x \in P, \exists t : F^t(x) = y_0$

- **nilpotency:** $\exists y_0, \forall x, \exists t : F^t(x) = y_0$
- **periodic nilpotency:** $\exists y_0 \in P, \forall x \in P, \exists t : F^t(x) = y_0$

Question

can we decide nilpotency? periodic nilpotency?

are nilpotency and periodic nilpotency equivalent?

Table of contents

1 Cellular Automata Basics

2 Applications of Domino Problem

- **3** A Parenthesis of Decidability
- **4** Snake Tilings and Applications

• given a tile set $T = \{\tau_1, \ldots, \tau_n\}$

• given a tile set $T = \{\tau_1, \ldots, \tau_n\}$

define a 2D CA F on alphabet $Q = T \cup \{e\}$ by

 $F(x)(\mathbf{i}) = \begin{cases} x(\mathbf{i}) & \text{if valid } T\text{-pattern around } \mathbf{i} \\ e & \text{else} \end{cases}$

• given a tile set $T = \{\tau_1, \ldots, \tau_n\}$

define a 2D CA F on alphabet $Q = T \cup \{e\}$ by

$$F(x)(\mathbf{i}) = egin{cases} x(\mathbf{i}) & ext{if valid T-pattern around \mathbf{i}} \ e & ext{else} \end{cases}$$

If T can tile the plane

$$\blacksquare \exists x \in T^{\mathbb{Z}^2} \text{ with } F(x) = x$$

 $\blacksquare F(\overline{e}) = \overline{e}$

F is not nilpotent

If T cannot tile the plane

■ ∃*N* s.t. no *N* × *N* pattern is *T*-valid

$$\forall x \in Q^{\mathbb{Z}^2} : F^N(x) = \overline{e}$$

F is nilpotent

• given a tile set $T = \{\tau_1, \ldots, \tau_n\}$

define a 2D CA F on alphabet $Q = T \cup \{e\}$ by

$$F(x)(\mathbf{i}) = egin{cases} x(\mathbf{i}) & ext{if valid T-pattern around \mathbf{i}} \ e & ext{else} \end{cases}$$

If T can tile the plane **periodically**

- $\blacksquare \exists x \in P \cap T^{\mathbb{Z}^2} \text{ with } F(x) = x$
- $\blacksquare F(\overline{e}) = \overline{e}$
- F is not periodic nilpotent

If T cannot tile the plane periodically

- $\forall x \in P \ e$ appears in F(x)
- $\forall x \in P, \exists t : F^t(x) = \overline{e}$
- F is periodic nilpotent

Consequences

1 there are aperiodic tile sets (Berger, 64)

Theorem

For 2D CA, nilpotency \neq periodic nilpotency

Consequences

1 there are aperiodic tile sets (Berger, 64)

Theorem

For 2D CA, nilpotency \neq periodic nilpotency

2 the domino problem is undecidable (Berger, 64)

Theorem

For 2D CA, nilpotency is undecidable

Consequences

1 there are aperiodic tile sets (Berger, 64)

Theorem

For 2D CA, nilpotency \neq periodic nilpotency

2 the domino problem is undecidable (Berger, 64)

Theorem

For 2D CA, nilpotency is undecidable

 the periodic domino problem is undecidable (Gurevich-Koryakov,72)

Theorem

For 2D CA, periodic nilpotency is undecidable

same story with NE-deterministic tile sets...

same story with NE-deterministic tile sets...

1 there are aperiodic NE-deterministic tile sets (Kari, 91)

Theorem

For 1D CA, nilpotency \neq periodic nilpotency

same story with NE-deterministic tile sets...

1 there are aperiodic NE-deterministic tile sets (Kari, 91)

Theorem

For 1D CA, nilpotency \neq periodic nilpotency

2 the deterministic domino problem is undecidable (Kari, 91)

Theorem

For 1D CA, nilpotency is undecidable

same story with NE-deterministic tile sets...

1 there are aperiodic NE-deterministic tile sets (Kari, 91)

Theorem

For 1D CA, nilpotency \neq periodic nilpotency

2 the deterministic domino problem is undecidable (Kari, 91)

Theorem

For 1D CA, nilpotency is undecidable

 the deterministic periodic domino problem is undecidable (Mazoyer-Rapaport,98)

Theorem

For 1D CA, periodic nilpotency is undecidable

Table of contents

- **1** Cellular Automata Basics
- 2 Applications of Domino Problem

3 A Parenthesis of Decidability

4 Snake Tilings and Applications

1D Sofic Subshifts

■ graph $G = (V, E, \lambda)$ with edge labeling $\lambda : E \rightarrow Q$

\Sigma_G : labeled bi-infinite paths

 $\cdots 01110110 \cdots \notin \Sigma_G$ $\cdots 011011110 \cdots \in \Sigma_G$

1D Sofic Subshifts

■ graph $G = (V, E, \lambda)$ with edge labeling $\lambda : E \rightarrow Q$

 Σ_G : labeled bi-infinite paths

 $\cdots 01110110 \cdots \notin \Sigma_G$ $\cdots 011011110 \cdots \in \Sigma_G$

Theorem

- given *G* it is decidable whether $\Sigma_G = \emptyset$
- given *G* and *G'* it is decidable whether $\Sigma_G = \Sigma_{G'}$

1D Sofic Subshifts and CAs

1D Sofic Subshifts and CAs

surjectivity: $\forall y, \exists x : F(x) = y$

• injectivity: $\forall x, x' : F(x) = F(x') \Rightarrow x = x'$

surjectivity:
$$\forall y, \exists x : F(x) = y$$

injectivity: $\forall x, x' : F(x) = F(x') \Rightarrow x = x'$

Theorem (Amoroso-Patt,72)

Injectivity(=reversibility) and surjectivity are decidable in 1D.

proof: previous slide

$$egin{aligned} \mathcal{F}(\mathcal{Q}^{\mathbb{Z}}) &= \mathcal{Q}^{\mathbb{Z}} \ \{(x,y): \mathcal{F}(x) = \mathcal{F}(y)\} = \{(x,x): x \in \mathcal{Q}^{\mathbb{Z}}\} \end{aligned}$$

surjectivity:
$$\forall y, \exists x : F(x) = y$$

injectivity: $\forall x, x' : F(x) = F(x') \Rightarrow x = x'$

Theorem (Amoroso-Patt,72)

Injectivity(=reversibility) and surjectivity are decidable in 1D.

proof: previous slide

$$F(Q^{\mathbb{Z}}) = Q^{\mathbb{Z}}$$

 $\{(x,y): F(x) = F(y)\} = \{(x,x): x \in Q^{\mathbb{Z}}\}$

• if *F* reversible, what is the neighborhood of F^{-1} ?

surjectivity:
$$\forall y, \exists x : F(x) = y$$

injectivity: $\forall x, x' : F(x) = F(x') \Rightarrow x = x'$

Theorem (Amoroso-Patt,72)

Injectivity(=reversibility) and surjectivity are decidable in 1D.

proof: previous slide

$$F(Q^{\mathbb{Z}}) = Q^{\mathbb{Z}}$$

 $\{(x,y): F(x) = F(y)\} = \{(x,x): x \in Q^{\mathbb{Z}}\}$

• if *F* reversible, what is the neighborhood of F^{-1} ?

■ linear in the neighborhood of *F* (Czeizler-Kari,05).

surjectivity:
$$\forall y, \exists x : F(x) = y$$

injectivity: $\forall x, x' : F(x) = F(x') \Rightarrow x = x'$

Theorem (Amoroso-Patt,72)

Injectivity(=reversibility) and surjectivity are decidable in 1D.

proof: previous slide

$$egin{aligned} \mathcal{F}(\mathcal{Q}^{\mathbb{Z}}) &= \mathcal{Q}^{\mathbb{Z}} \ \{(x,y): \mathcal{F}(x) = \mathcal{F}(y)\} = \{(x,x): x \in \mathcal{Q}^{\mathbb{Z}}\} \end{aligned}$$

• if *F* reversible, what is the neighborhood of F^{-1} ?

■ linear in the neighborhood of *F* (Czeizler-Kari,05).

any first-order property is decidable (Sutner,07)

Table of contents

- **1** Cellular Automata Basics
- 2 Applications of Domino Problem
- **3** A Parenthesis of Decidability

4 Snake Tilings and Applications
Directed Tiles and Snakes

T a tile set

Directed Tiles and Snakes

T a tile set
orientation on tiles $\vec{D}: T \rightarrow \{(\pm 1, 0), (0, \pm 1)\}$

Directed Tiles and Snakes

 directed snake: path following arrows and respecting colors

$$s_n \in T$$

$$p_{n+1} = p_n + \vec{D}(s_n)$$

Infinite Directed Snake Problem

Infinite Directed Snake Problem

decision problem: given a directed tile set (T, \vec{D}) , does it admit an infinite directed snake?

Infinite Directed Snake Problem

decision problem: given a directed tile set (T, \vec{D}) , does it admit an infinite directed snake?

Theorem (Kari, 1994)

The infinite directed snake problem is undecidable

■ ∃ directed tile set such that all snakes look like this

■ ∃ directed tile set such that all snakes look like this

idea 1: Hilbert curve as a substitution σ

idea 1: Hilbert curve as a substitution σ

■ idea 1: Hilbert curve as a substitution σ

idea 2: self-similar structure to execute σ

can be done with Robinson tiles but many details to check!

idea 2: self-similar structure to execute σ

can be done with Robinson tiles but many details to check!

idea 2: self-similar structure to execute σ

can be done with Robinson tiles but many details to check!

final touch at squares of level 1 and 2

level 2

final touch at squares of level 1 and 2

level 2

final touch at squares of level 1 and 2

■ idea 3: snake ⇒ correct tiling

- **1** take a space filling directed tile set (T, \vec{D})
 - **T** tiles the plane and (T, \vec{D}) admits infinite snakes
 - **any infinite snake** of (T, \vec{D}) covers $N \times N$ squares for infinitely many N

- **1** take a space filling directed tile set (T, \vec{D})
 - **T** tiles the plane and (T, \vec{D}) admits infinite snakes
 - **any infinite snake** of (T, \vec{D}) covers $N \times N$ squares for infinitely many N
- **2** given a tile set T', construct $T'' = T \times T'$
 - constraints of *T* and *T*′ on respective layer
 - direction given by \vec{D} on T-layer

- **1** take a space filling directed tile set (T, \vec{D})
 - **T** tiles the plane and (T, \vec{D}) admits infinite snakes
 - **any infinite snake** of (T, \vec{D}) covers $N \times N$ squares for infinitely many N
- **2** given a tile set T', construct $T'' = T \times T'$
 - constraints of *T* and *T*′ on respective layer
 - direction given by \vec{D} on T-layer
- **3** if T' tiles the plane then T'' admits an infinite snake

- **1** take a space filling directed tile set (T, \vec{D})
 - **T** tiles the plane and (T, \vec{D}) admits infinite snakes
 - **any infinite snake** of (T, \vec{D}) covers $N \times N$ squares for infinitely many N
- **2** given a tile set T', construct $T'' = T \times T'$
 - constraints of *T* and *T*′ on respective layer
 - direction given by \vec{D} on T-layer
- **3** if T' tiles the plane then T'' admits an infinite snake
- 4 if T' does not tile the plane
 - suppose *s* is an infinite snake of *T*"
 - induces an infinite snake of T
 - **ust cover arbitrarily large** $N \times N$ squares
 - so arbitrary large $N \times N$ squares are tiled by T'
 - by compacity T' admits a tiling of the plane: contradiction!

- given a directed tile set T, D, define F on T × {0, 1}:
 f computes 1D XOR CA along snakes
 - 2 *F* does nothing when tiling error in the neighborhood

$$F(x)(\mathbf{i}) = \begin{cases} x_{\mathbf{i}} & \text{if } T\text{-layer invalid at } \mathbf{i}, \\ (\tau_{\mathbf{i}}, b) & \text{else with } b = b_{\mathbf{i}} + b_{\vec{D}(x_{\mathbf{i}})} \mod 2, \end{cases}$$

- given a directed tile set T, D, define F on T × {0, 1}:
 F computes 1D XOR CA along snakes
 - 2 F does nothing when tiling error in the neighborhood

$$F(x)(\mathbf{i}) = \begin{cases} x_{\mathbf{i}} & \text{if } T\text{-layer invalid at } \mathbf{i}, \\ (\tau_{\mathbf{i}}, b) & \text{else with } b = b_{\mathbf{i}} + b_{\vec{D}(x_{\mathbf{i}})} \mod 2, \end{cases}$$

∃ infinite snake

F is **not** reversible

- given a directed tile set T, D, define F on T × {0, 1}:
 F computes 1D XOR CA along snakes
 F deep netbing when tiling error in the peighborhood
 - **2** *F* does nothing when tiling error in the neighborhood

$$F(x)(\mathbf{i}) = egin{cases} x_{\mathbf{i}} & ext{if T-layer invalid at \mathbf{i},} \ (au_{\mathbf{i}}, b) & ext{else with $b = b_{\mathbf{i}} + b_{ec{D}(x_{\mathbf{i}})}$ mod 2,} \end{cases}$$

∃ infinite snake

F is **not** reversible

no infinite snake

- F periodic on each snake
- global bound on snakes
- F periodic

- given a directed tile set T, D, define F on T × {0, 1}:
 F computes 1D XOR CA along snakes
 - **2** *F* does nothing when tiling error in the neighborhood

$$F(x)(\mathbf{i}) = \begin{cases} x_{\mathbf{i}} & \text{if } T\text{-layer invalid at } \mathbf{i}, \\ (\tau_{\mathbf{i}}, b) & \text{else with } b = b_{\mathbf{i}} + b_{\vec{D}(x_{\mathbf{i}})} \mod 2, \end{cases}$$

∃ infinite snake

F is **not** reversible

no infinite snake

- F periodic on each snake
- global bound on snakes
- F periodic
- F time symmetric

Theorem (Kari 94 + Gajardo-Kari-Moreira 12)

For 2D CA each of reversibility/periodicity/time-symmetry is undecidable

Theorem (Kari 94 + Gajardo-Kari-Moreira 12)

For 2D CA each of reversibility/periodicity/time-symmetry is undecidable

Theorem (Kari 94)

Surjectivity is undecidable for 2D CA.

Theorem (Kari 94 + Gajardo-Kari-Moreira 12)

For 2D CA each of reversibility/periodicity/time-symmetry is undecidable

Theorem (Kari 94)

Surjectivity is undecidable for 2D CA.

Theorem (Kari-Ollinger 08)

Periodicity is undecidable for 1D CA

Theorem (Kari 94 + Gajardo-Kari-Moreira 12)

For 2D CA each of reversibility/periodicity/time-symmetry is undecidable

Theorem (Kari 94)

Surjectivity is undecidable for 2D CA.

Theorem (Kari-Ollinger 08)

Periodicity is undecidable for 1D CA

Open

Is time symmetry decidable in 1D?

This is Not the End

from 2D SFT to 1D CA: is it about determinism?

deterministic chaos / topological dynamics

ergodic dynamics / stochastic CA

intrinsic simulations and universality

CA as a parallel computational model

links between blue and red