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Cellular Automaton of Dimension d
Q : alphabet
U ⊆ Zd : finite neighborhood
f : QU → Q : local transition map

a global map: F : QZd → QZd
defined by

∀i ∈ Zd ,F (x)(i) = f (x|i+U)

x

F (x)

f

x|i+U

F (x)(i)
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1D Example: XOR

d = 1, Q = {0,1}, U = {−1,0}, f (a,b) = a + b mod 2:

F (x)(i) = f (x|i+U)

x
F (x)
F 2(x)
F 3(x)
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F 7(x)
F 8(x)
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Other 1D Example
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2D Examples

DEMO...
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Hedlund’s Theorem
Theorem (Curtis-Lyndon-Hedlund)

Cellular automata are exactly the continuous maps that
commute with translations.

Proof:

F (x)(i) = f (x|i+U)

x

F (x)

⇒

translation invariant
⇐ uniform continuity: ∀x∀ε∃δ ⇒ ∀ε∃δ∀x
+ translation invariance
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Reversibility

F global map of a CA
F can be bijective (one-to-one + onto)

F (x) = F (y)⇒ x = y and F (QZd
) = QZd

in this case, F−1:
1 commutes with shift maps
2 is continuous (F continuous bijection on a compact)

therefore F−1 is a CA by Hedlund’s theorem!

Question

What is the neighborhood of F−1?
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Reversibility
Particular cases

F periodic
∃n∀x : F n(x) = x

involution
F = F−1

product of two involutions

= time symmetry

F = G ◦ H with G and H involutions

⇔ F = G ◦ F−1 ◦G︸ ︷︷ ︸
H

with G involution

H G H G H G

F F F

F−1 F−1
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Time Symmetry
Physical intuition

change arrow of time by an involution

I :
−→v 7→ −−→v

BA

1 run law of physics during time t
2 apply involution I
3 run law of physics during time t
4 apply involution I

: we are back to initial state!
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Time Symmetry

any permutation π of a finite set E is time symmetric

1 decomposition into cycles : π(x) = x + 1 mod n
2 then π = M0 ◦Mn−1 where Ma(x) = a− x mod n

non-periodic example: Margolus Billiard

DEMO...

Question

Can we decide whether a CA is reversible? periodic? time
symmetric?
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Periodic configurations
i ∈ Zd , x is i-periodic if x(j) = x(j + i) for all j

e1 = (1,0, . . . ,0), . . . ,ed = (0, . . . ,0,1)

Pn = {x : x is nek-periodic for all k}
P = ∪nPn

F any CA: F (P) ⊆ P

P is dense in QZd

F|P = G|P ⇒ F = G
F|P surjective⇒ F surjective
F 1D CA: F (x) = y and y ∈ P ⇒ ∃x ′ ∈ P with F (x ′) = y
for 1D CA: F surjective⇔ F|P surjective

Open problem

Is there a 2D surjective CA F with F|P not surjective?
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Surjunctivity

Theorem

If a d-dimensional CA F is injective then it is surjective.

Proof:
F (Pn) ⊆ Pn and Pn finite
F|Pn injective⇒ F|Pn surjective
P ⊆ Img(F ) and P dense⇒ F surjective

definition of a CA on any group G
1 configurations QG

2 CA F : QG → QG with F (x)(i) = f (x|i+U)

Open problem (Gottschalk 1973)

∃ group G with some injective CA which is not surjective?
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Long Term

y0

nilpotency: ∃y0,∀x ,∃t : F t (x) = y0

periodic nilpotency: ∃y0 ∈ P,∀x ∈ P,∃t : F t (x) = y0

Question

can we decide nilpotency? periodic nilpotency?
are nilpotency and periodic nilpotency equivalent?
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Basic Construction

given a tile set T = {τ1, . . . , τn}

define a 2D CA F on alphabet Q = T ∪ {e} by

F (x)(i) =

{
x(i) if valid T -pattern around i
e else

If T can tile the plane

with F (x) = x

F (e) = e

F is not nilpotent

If T cannot tile the plane

F is nilpotent
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Basic Construction

given a tile set T = {τ1, . . . , τn}

define a 2D CA F on alphabet Q = T ∪ {e} by

F (x)(i) =

{
x(i) if valid T -pattern around i
e else

If T can tile the plane
periodically

∃x ∈ P ∩ T Z2
with F (x) = x

F (e) = e

F is not periodic nilpotent

If T cannot tile the plane
periodically

∀x ∈ P e appears in F (x)

∀x ∈ P,∃t : F t (x) = e

F is periodic nilpotent
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Consequences

1 there are aperiodic tile sets (Berger, 64)

Theorem

For 2D CA, nilpotency 6≡ periodic nilpotency

2 the domino problem is undecidable (Berger, 64)

Theorem

For 2D CA, nilpotency is undecidable

3 the periodic domino problem is undecidable
(Gurevich-Koryakov,72)

Theorem

For 2D CA, periodic nilpotency is undecidable
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Determinism

same story with NE-deterministic tile sets...

1 there are aperiodic NE-deterministic tile sets (Kari, 91)

Theorem

For 1D CA, nilpotency 6≡ periodic nilpotency

2 the deterministic domino problem is undecidable (Kari, 91)

Theorem

For 1D CA, nilpotency is undecidable

3 the deterministic periodic domino problem is undecidable
(Mazoyer-Rapaport,98)

Theorem

For 1D CA, periodic nilpotency is undecidable
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1D Sofic Subshifts
graph G = (V ,E , λ) with edge labeling λ : E → Q

A B

1

1

0

ΣG : labeled bi-infinite paths

· · · 01110110 · · · 6∈ ΣG

· · · 011011110 · · · ∈ ΣG

Theorem

given G it is decidable whether ΣG = ∅
given G and G′ it is decidable whether ΣG = ΣG′
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1D Sofic Subshifts and CAs

suppose U = {−1,0,1}
The subshift F (QZ) is sofic

u1, u2 u2, u3
f (u1, u2, u3) 00

01

10

11

1

1
0

0

0 1 10

f (a,b, c) = a + b + c mod 2

ΣR = {(x , y) : F (x) = F (y)} (abusing notation) is sofic

u1, u2
v1, v2

u2, u3
v2, v3if f (u1, u2, u3) = f (v1, v2, v3)

(u2, v2)
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1D CA and first-order theory
surjectivity: ∀y , ∃x : F (x) = y
injectivity: ∀x , x ′ : F (x) = F (x ′)⇒ x = x ′

Theorem (Amoroso-Patt,72)

Injectivity(=reversibility) and surjectivity are decidable in 1D.

proof: previous slide

F (QZ) = QZ

{(x , y) : F (x) = F (y)} = {(x , x) : x ∈ QZ}

if F reversible, what is the neighborhood of F−1?

linear in the neighborhood of F (Czeizler-Kari,05).

any first-order property is decidable (Sutner,07)
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Directed Tiles and Snakes

T a tile set

orientation on tiles ~D : T → {(±1,0), (0,±1)}

directed snake: path following arrows and respecting
colors

sn ∈ T

pn+1 = pn + ~D(sn)
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Infinite Directed Snake Problem

decision problem: given a directed tile set (T , ~D), does it
admit an infinite directed snake?

Theorem (Kari, 1994)

The infinite directed snake problem is undecidable
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A Space Filling Snake Tileset

∃ directed tile set such that all snakes look like this
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A Space Filling Snake Tileset
idea 1: Hilbert curve as a substitution σ

=a

=b

×2 mirror

×4 rotate

|Q| = 16

σ(q) =

SWq SEq

NWq NEq
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A Space Filling Snake Tileset
idea 1: Hilbert curve as a substitution σ

a

a b

a b

a

b

a

b a

a

a

b

a b

a b

a a

a b

=a

=b

×2 mirror

×4 rotate

|Q| = 16

σ(q) =

SWq SEq

NWq NEq
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A Space Filling Snake Tileset

idea 2: self-similar structure to execute σ

2n − 1

can be done with Robinson tiles but many details to check!
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A Space Filling Snake Tileset

final touch at squares of level 1 and 2

level 2

NWq NEq

q

a b

=a

=b

idea 3: snake⇒ correct tiling
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A Space Filling Snake Tileset

final touch at squares of level 1 and 2

level 2

NWq NEq

q

a b

=a

=b

idea 3: snake⇒ correct tiling
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Infinite Snake Problem Undecidable
Proof:

1 take a space filling directed tile set (T , ~D)

T tiles the plane and (T , ~D) admits infinite snakes
any infinite snake of (T , ~D) covers N × N squares
for infinitely many N

2 given a tile set T ′, construct T ′′ = T × T ′

constraints of T and T ′ on respective layer
direction given by ~D on T -layer

3 if T ′ tiles the plane then T ′′ admits an infinite snake

4 if T ′ does not tile the plane
suppose s is an infinite snake of T ′′

induces an infinite snake of T
must cover arbitrarily large N × N squares
so arbitrary large N × N squares are tiled by T ′

by compacity T ′ admits a tiling of the plane: contradiction!
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Consequences
given a directed tile set T , ~D, define F on T × {0,1}:

1 F computes 1D XOR CA along snakes
2 F does nothing when tiling error in the neighborhood

F (x)(i) =

{
xi if T -layer invalid at i,
(τi,b) else with b = bi + b~D(xi)

mod 2,

∃ infinite snake

· · · 000 · · ·

· · · 111 · · ·
· · · 000 · · ·

F is not reversible

no infinite snake

F periodic on each snake
global bound on snakes
F periodic

F time symmetric
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Undecidability!

Theorem (Kari 94 + Gajardo-Kari-Moreira 12)

For 2D CA each of reversibility/periodicity/time-symmetry is
undecidable

Theorem (Kari 94)

Surjectivity is undecidable for 2D CA.

Theorem (Kari-Ollinger 08)

Periodicity is undecidable for 1D CA

Open

Is time symmetry decidable in 1D?
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This is Not the End

from 2D SFT to 1D CA: is it about determinism?

deterministic chaos / topological dynamics

ergodic dynamics / stochastic CA

intrinsic simulations and universality

CA as a parallel computational model

links between blue and red
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