Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	00000000000000

Tilings and Cellular Automata, part I. EJCIM 2017, LIP (ENS de Lyon)

Nathalie Aubrun, Guillaume Theyssier

24th January 2017

Introduction: Symbolic Dynamics and tilings 000000	Dynamical systems ?	Dimension 2 ($G = \mathbb{Z}^2$) 0000	Undecidability of DP on Z ² , proof I Und
Tilings?			

"Cover the plane with (arbitrarily many) copies of some basic tiles."

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on \mathbb{Z}^2 , proof I	Und
000000	000	0000	00000000000000	
Outline of the talk				

1 Introduction: Symbolic Dynamics and tilings

- 2 Dynamical systems?
- 3 Dimension 2 ($G = \mathbb{Z}^2$)
- 4 Undecidability of DP on \mathbb{Z}^2 , proof I
- **(5)** Undecidability of DP on \mathbb{Z}^2 , proof II

Configurations, patterns and cylinders

- Let A be a finite alphabet, G be a finitely generated group.
- Colorings $x : G \to A$ are called **configurations**.
- A **pattern** is a finite configuration $p: S \rightarrow A$.

Examples:

$$A = \{ \blacksquare, \blacksquare \}$$

Configurations, patterns and cylinders

- \blacktriangleright Let A be a finite alphabet, G be a finitely generated group.
- Colorings $x : G \to A$ are called **configurations**.
- A **pattern** is a finite configuration $p: S \rightarrow A$.

Examples:

 $A = \{ \blacksquare, \blacksquare \}$

- Endowed with the pro-discrete topology A^G is a compact and metrizable set.
- Cylinders form a clopen basis

$$[a]_g = \left\{ x \in A^G \mid x_g = a \right\}.$$

- ▶ A **pattern** is a finite intersection of cylinders, or equivalently a finite configuration $p: S \rightarrow A$
- A metric for the cylinder topology is

$$d(x,y) = 2^{-\inf\{|g| \mid g \in G: x_g \neq y_g\}},$$

where |g| is the length of the shortest path from 1_G to g in $\Gamma(G, S)$.

Subshifts: topological definition

The **shift** σ is the natural action of G on A^G by translation:

$$\sigma^g(x)_h = x_{g^{-1} \cdot h}$$
 for all $x \in A^G$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Introduction:
 Symbolic Dynamics and tilings
 Dynamical systems?
 Dimension 2 ($G = \mathbb{Z}^2$)
 Undecidability of DP on \mathbb{Z}^2 , proof 1 Undecidability of OO
 Undecidability of DP on \mathbb{Z}^2 , proof 1 Undecidability

Subshifts: topological definition

The **shift** σ is the natural action of G on A^G by translation:

$$\sigma^g(x)_h = x_{g^{-1} \cdot h}$$
 for all $x \in A^G$.

(Topological) Definition: subshift

A subshift is a closed and σ -invariant subset of A^{G} .

Examples:

•
$$X = \{x \in \{0,1\}^{\mathbb{Z}} \mid \text{no two consecutive 1's in } x\}$$
?

$$\blacktriangleright X = \{x \in \{0,1\}^{\mathbb{Z}} \mid x_i = 0 \Rightarrow i \text{ is even}\}?$$

•
$$X = \{x \in \{0,1\}^{\mathbb{Z}} \mid \text{finite blocks of 1's are of even length}\}$$
?

•
$$X = \{x \in \{0,1\}^{\mathbb{Z}} \mid \text{finite blocks of 1's are of prime length}\}$$
?

•
$$X = \{x \in \{0,1\}^G \mid |\{g \in G : x_g = 1\}| = 1\}$$
?

• $X = \{x \in \{0,1\}^G \mid |\{g \in G : x_g = 1\}| \le 1\}$?

Subshifts: combinatorial definition

(Combinatorial) Definition: subshift

Let F be a set of finite patterns. The **subshift** defined by the set of forbidden patterns F is the set

$$X_F = \{x \in A^G, \text{no pattern of } F \text{ appears in } x\}$$

Subshifts: combinatorial definition

(Combinatorial) Definition: subshift

Let F be a set of finite patterns. The **subshift** defined by the set of forbidden patterns F is the set

$$X_F = \{x \in A^G, \text{ no pattern of } F \text{ appears in } x\}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Proposition

The topological and combinatorial definitions coincide.

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	00000000000000
Compactness of A^G			

Proposition

The Cantor space A^{G} is compact for the pro-discrete topology.

Concretely:

- ► X_F is non-empty iff there exist arbitrarily big finite patterns that avoid F (for instance every ball B_n can be colored avoiding F).
- ► If there exist arbitrarily big finite patterns with no letter a that avoid F, there exists a configuration in X_F with no letter a.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

- Dynamical Systems (Symbolic Dynamics)
- Tilings theory (by Wang tiles)
- Cellular automata (see next course by G. Theyssier)

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I	Und
000000	000	0000	00000000000000	
O_{ij}				

◆□> <畳> <目> <目> <目> <目> <</p>

Outline of the talk.

Introduction: Symbolic Dynamics and tilings

2 Dynamical systems?

- 3 Dimension 2 ($G = \mathbb{Z}^2$)
- 4 Undecidability of DP on \mathbb{Z}^2 , proof I
- **(5)** Undecidability of DP on \mathbb{Z}^2 , proof II

- ▶ X is a topological compact space, called the **phase space**
- ▶ *F* is a continuous map : $X \to X$

◆□> <畳> <目> <目> <目> <000</p>

- ▶ X is a topological compact space, called the **phase space**
- ▶ *F* is a continuous map : $X \to X$

- ▶ X is a topological compact space, called the **phase space**
- ▶ *F* is a continuous map : $X \to X$

- ▶ X is a topological compact space, called the **phase space**
- ▶ *F* is a continuous map : $X \to X$

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	00000000000000
Coding of the orbits			

- $X = \bigcup_{i=1}^{n} X_i$ a partition of the phase space X
- a color a_i associated with each X_i

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $X = \bigcup_{i=1}^{n} X_i$ a partition of the phase space X
- a color a_i associated with each X_i
- orbit $(F^n(x))_{n\in\mathbb{N}}$ coded by a sequence $y\in\{a_1,\ldots,a_n\}^{\mathbb{N}}$

◆□> <畳> <目> <目> <目> <000</p>

Dynamical Systems and subshifts

▶ If the dynamical system (X, F) is *invertible* and *expansive*, then $X = \bigcup_{i=1}^{n} X_i$ can be chosen so that the set of coding of orbits

$$\widetilde{X} = \left\{ y \in \{a_1, \dots, a_n\}^{\mathbb{Z}} \mid \exists x \in X, \forall k \in \mathbb{Z}, \ F^k(x) \in X_i \right\}$$

is a subshift in **one-to-one correspondence** with (X, F).

- Dynamical properties of the original system (X, F) can be read on the corresponding subshift (X̃, σ).
- If the partition X = ⋃_{i=1}ⁿ X_i is well-chosen (Markov partition), the subshift X̃ is an SFT!

Introduction: Symbolic Dynamics and tilings Dynamical systems? Dimension 2 ($G = \mathbb{Z}^2$) Undecidability of DP on \mathbb{Z}^2 , proof 1 Und

Classes of subshifts: Subshifts of finite type (SFT)

- Sets of configurations that avoid a finite set of forbidden patterns.
- ► For instance $X_{\{ ___, _, _, _\}}$ contains the following configurations (in 2D):

Introduction: Symbolic Dynamics and tilings Dynamical systems? Dimension 2 ($G = \mathbb{Z}^2$) Undecidability of DP on \mathbb{Z}^2 , proof 1 Und

Classes of subshifts: Subshifts of finite type (SFT)

- ▶ Sets of configurations that avoid a **finite** set of forbidden patterns.
- ► For instance $X_{\{ ___, __, __\}}$ contains the following configurations (in 2D):

Definition: subshift of finite type (SFT)

A subshift of finite type (SFT) is a subshift that can be defined by a finite set of forbidden patterns.

- simplest class with respect to the combinatorial definition
- ▶ 2D-SFT \equiv Wang tilings

A factor map $\Phi : A^G \to B^G$ is given by a local map ϕ (or equivalently Φ is a continuous and σ -commuting map):

$$x \in A^{\mathbb{Z}^2}$$
 $\Phi(x) \in B^{\mathbb{Z}^2}$

A factor map $\Phi : A^G \to B^G$ is given by a local map ϕ (or equivalently Φ is a continuous and σ -commuting map):

$$x \in A^{\mathbb{Z}^2}$$
 $\Phi(x) \in B^{\mathbb{Z}^2}$

A factor map $\Phi : A^{G} \to B^{G}$ is given by a local map ϕ (or equivalently Φ is a continuous and σ -commuting map):

$$x \in A^{\mathbb{Z}^2}$$
 $\Phi(x) \in B^{\mathbb{Z}^2}$

A factor map $\Phi : A^{G} \to B^{G}$ is given by a local map ϕ (or equivalently Φ is a continuous and σ -commuting map):

$$x \in A^{\mathbb{Z}^2}$$
 $\Phi(x) \in B^{\mathbb{Z}^2}$

х

A factor map $\Phi : A^{G} \to B^{G}$ is given by a local map ϕ (or equivalently Φ is a continuous and σ -commuting map):

$$\in A^{\mathbb{Z}^2}$$
 $\Phi(x) \in B^{\mathbb{Z}^2}$

A factor map $\Phi : A^{G} \to B^{G}$ is given by a local map ϕ (or equivalently Φ is a continuous and σ -commuting map):

$$x \in A^{\mathbb{Z}^2}$$
 $\Phi(x) \in B^{\mathbb{Z}^2}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Definition: sofic subshift

A sofic subshift is the factor of an SFT.

A factor map $\Phi : A^{G} \to B^{G}$ is given by a local map ϕ (or equivalently Φ is a continuous and σ -commuting map):

$$x \in A^{\mathbb{Z}^2}$$
 $\Phi(x) \in B^{\mathbb{Z}^2}$

Definition: sofic subshift

A **sofic subshift** is the factor of an SFT.

- ▶ Recodings of SFT, with local neighborhood.
- ▶ In 1D ($G = \mathbb{Z}$), sofic subshifts are exactly those recognized by finite automata.

Introduction:	Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000		000	0000	00000000000000
Examp	oles			

Which subshifts are SFTs? sofic subshifts?

Examples:

•
$$X = \{x \in \{0,1\}^{\mathbb{Z}} \mid \text{no two consecutive 1's in } x\}$$
?

• $X = \{x \in \{0,1\}^{\mathbb{Z}} \mid \text{finite blocks of 1's are of even length}\}$?

•
$$X = \{x \in \{0,1\}^{\mathbb{Z}} \mid \text{finite blocks of 1's are of prime length}\}$$
?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

•
$$X = \{x \in \{0,1\}^G \mid |\{g \in G : x_g = 1\}| \le 1\}$$
?

Big questions in Symbolic Dynamics

- Classify SFTs/sofic subshifts up to conjugacy.
- Find conjugacy invariants.
- ▶ Find factors of SFTs with equal entropy?
- Decide dynamical properties? (injectivity, surjectivity, expansiveness...)

Introduction:	Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000		●00	0000	00000000000000
Dimen	ision 1			

Given a subshift $X \subset A^{\mathbb{Z}}$, one can consider its **language** $\mathcal{L}(\mathcal{X})$ defined by

$$\mathcal{L}(X) = \bigcup_{n \in \mathbb{N}} \mathcal{L}_n(X)$$

where

$$\mathcal{L}_n(X) = \{ w \in A^n \mid \exists x \in X, x_i = w_i \; \forall i = 1 \dots n \}.$$

Remark: We have $X = X_{\overline{\mathcal{L}(X)}}$, and $\overline{\mathcal{L}(X)}$ is the biggest (for inclusion) set of patterns that defines X.

Proposition

A subshift X is sofic iff its language $\mathcal{L}(X)$ is rational.

Graph representation of SFTs and sofic subshifts

Proposition

A subshift X is sofic iff its language $\mathcal{L}(X)$ is rational.

Proposition

A subshift X is sofic iff it is the set of labels of bi-infinite paths of a finite edge-labeled graph.

Examples:

- $X = \{x \in \{0,1\}^{\mathbb{Z}} \mid \text{no two consecutive 1's in } x\}$?
- $X = \{x \in \{0,1\}^{\mathbb{Z}} \mid \text{finite blocks of 1's are of even length}\}$?
- $X = \{x \in \{0,1\}^{\mathbb{Z}} \mid |\{i \in \mathbb{Z} : x_i = 1\}| \le 1\}$?

- Existence of a configuration in X_F .
- Periodic configurations.
- Compute the entropy from the graph matrix.
- ▶ etc...

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	00000000000000
Outline of the talk.			

- Introduction: Symbolic Dynamics and tilings
- 2 Dynamical systems?
- 3 Dimension 2 ($G = \mathbb{Z}^2$)
- 4 Undecidability of DP on \mathbb{Z}^2 , proof I
- **(5)** Undecidability of DP on \mathbb{Z}^2 , proof II
| Introduction: Symbolic Dynam | ics and tilings | Dynamical systems? | Dimension 2 ($G = \mathbb{Z}^2$) | Undecidability of DP on \mathbb{Z}^2 , proof I | Und |
|------------------------------|-----------------|--------------------|------------------------------------|--|-----|
| 000000 | | 000 | ●000 | 00000000000000 | |
| | | | | | |

SFTs and Wang tiles

We now fix $G = \mathbb{Z}^2$.

Wang tiles

Neighborhood rule

Introduction: Syn	nbolic Dynamics and tiling	s Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on \mathbb{Z}^2 , proof I	Und
000000		000	0000	000000000000000000000000000000000000000	
~	1				

SFTs and Wang tiles

We now fix $G = \mathbb{Z}^2$.

Wang tiles

Neighborhood rule

 $X_{ au}$ set of valid tilings by au

◆□> <畳> <目> <目> <目> <目> <</p>

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on \mathbb{Z}^2 , proof I	Und
000000	000	0000	000000000000000	
The Domino problem	1			

 $\mathsf{SFT}\approx X_\tau$

- ▶ Tilings by Wang tiles can be seen as an SFT.
- ▶ Every SFT can be encoded inside a finite set of Wang tiles

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Domino problem on \mathbb{Z}^2

Input: A finite set of Wang tiles τ . **Output:** Yes if there exists a valid tiling by τ , No otherwise.

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$) 0000	Undecidability of DP on Z ² , proof I Und
Periodicity			

We can define two notions of **periodic** configuration:

A configuration x ∈ A^{Z²} is weakly periodic if x admits a non-trivial direction d of periodicity.

A configuration x ∈ A^{Z²} is strongly periodic if x admits two non-collinear directions *u*, *v* of periodicity.

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$) 0000	Undecidability of DP on Z ² , proof I Und
Periodicity			

We can define two notions of **periodic** configuration:

- A configuration x ∈ A^{Z²} is weakly periodic if x admits a non-trivial direction *u* of periodicity.

Proposition

On $\mathbb{Z}^2,$ if an SFT contains a weakly periodic configuration, then it contains a strongly periodic one.

Proof: on the blackboard.

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged to do so periodically.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Wang's conjecture (1961)

A non-empty SFT contains a periodic configuration.

Wang's conjecture (1961)

A non-empty SFT contains a periodic configuration.

Suppose Wang's conjecture is true. Then you can decide DP !

Semi-algorithm 1:

- gives a finite periodic pattern, if it exists
- loops otherwise

Semi-algorithm 2:

gives an integer n so that there is no [1; n] × [1; n] locally admissible pattern, if it exists

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

loops otherwise

Wang's conjecture (1961)

A non-empty SFT contains a periodic configuration.

Suppose Wang's conjecture is true. Then you can decide DP !

Semi-algorithm 1:

- gives a finite periodic pattern, if it exists
- loops otherwise

Semi-algorithm 2:

- gives an integer n so that there is no [1; n] × [1; n] locally admissible pattern, if it exists
- loops otherwise

Consequence

The undecidability of **DP** implies existence of an aperiodic SFT.

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on \mathbb{Z}^2 , proof I	Und
000000	000	0000	000000000000000000000000000000000000000	
Outline of the talk				

- Introduction: Symbolic Dynamics and tilings
- 2 Dynamical systems?
- 3 Dimension 2 ($G = \mathbb{Z}^2$)
- 4 Undecidability of DP on \mathbb{Z}^2 , proof I
- **(5)** Undecidability of DP on \mathbb{Z}^2 , proof II

Attempt to prove undecidability of DP

Idea: encode Turing machines inside Wang tiles.

- ▶ Undecidability of the Halting problem of Turing machines.
- ▶ Reduction from the Halting problem of Turing machines.

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000

$\delta(q,x)$		Symbol x				
		a b			#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
tat€	q_{b^+}				$(q_{\parallel},b, ightarrow)$	
Ś	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$		
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000

$\delta(q,x)$		Symbol x				
		a b			#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
tat€	q_{b^+}			\perp	$(q_\parallel,b, ightarrow)$	
Ś	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$		
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000

$\delta(q,x)$		Symbol x				
		a b			#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
tat€	q_{b^+}			\perp	$(q_\parallel,b, ightarrow)$	
Ś	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$		
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000

5(Symbol x				
0(q,x)		a b			#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
tat€	q_{b^+}			\perp	$(q_\parallel,b, ightarrow)$	
Ś	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$		
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000

5(Symbol x				
0(q,x)		a b			#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
tat€	q_{b^+}			\perp	$(q_\parallel,b, ightarrow)$	
Ś	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$		
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000

5(Symbol x				
0(q,x)		a b			#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
tat€	q_{b^+}				$(q_{\parallel},b, ightarrow)$	
Ś	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$		
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000

5(Symbol x				
0(q,x)		a b			#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
tat€	q_{b^+}			\perp	$(q_\parallel,b, ightarrow)$	
Ś	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$		
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000

5(Symbol x				
0(q,x)		a b			#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
tat€	q_{b^+}			\perp	$(q_\parallel,b, ightarrow)$	
Ś	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$		
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000

5(Symbol x				
0(q,x)		a b			#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
tat€	q_{b^+}			\perp	$(q_\parallel,b, ightarrow)$	
Ś	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$		
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000

5(Symbol x				
o(q, x)		а	b		#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	σ q_{a^+} \perp		$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
tat€	q_{b^+}				$(q_{\parallel},b, ightarrow)$	
Ś	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$		
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000

5(Symbol x				
o(q, x)		а	b		#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
6	σ q_{a^+} \perp		$(q_{b^{++}},a, ightarrow)$	\perp	\perp	
tat€	q_{b^+}				$(q_{\parallel},b, ightarrow)$	
Ś	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$		
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I U
000000	000	0000	000000000000000000000000000000000000000

$\delta(q,x)$		Symbol x				
		а	b		#	
	q_0	\perp	\perp	\perp	$(q_{b^+},a, ightarrow)$	
b	q_{a^+}	\perp	$(q_{b^{++}},a, ightarrow)$	\perp		
tat€	q_{b^+}	\perp		\perp	$(q_{\parallel},b, ightarrow)$	
Ś	$q_{b^{++}}$		$(q_{b^{++}}, b, \rightarrow)$	$(q_{b^+}, b, \rightarrow)$		
	q_{\parallel}	$(q_{a^+},a, ightarrow)$	$(q_\parallel,b,\leftarrow)$	$(q_\parallel,\parallel,\leftarrow)$	$(q_\parallel,\parallel,\cdot)$	

Theorem (Turing, 1936)

The Halting problem (to know whether a Turing machine \mathcal{M} halts on input w or not) is undecidable.

Theorem

The Blank tape Halting problem (to know whether a Turing machine \mathcal{M} halts on the empty input) is undecidable.

- no computation head
- ▶ initial configuration ($^{\infty} \sharp^{\infty}, q_0$)
- $\blacktriangleright \delta(q,a) = (q',a',.)$

►
$$\delta(r, a) = (r', a', \rightarrow)$$

►
$$\delta(s, a) = (s', a', \leftarrow)$$

- no computation head
- ▶ initial configuration ($^{\infty} \sharp^{\infty}, q_0$)
- $\blacktriangleright \delta(q,a) = (q',a',.)$

►
$$\delta(r, a) = (r', a', \rightarrow)$$

►
$$\delta(s, a) = (s', a', \leftarrow)$$

- no computation head
- ▶ initial configuration ($^{\infty} \sharp^{\infty}, q_{O}$)
- $\blacktriangleright \delta(q,a) = (q',a',.)$

►
$$\delta(r, a) = (r', a', \rightarrow)$$

►
$$\delta(s, a) = (s', a', \leftarrow)$$

- no computation head
- initial configuration $({}^{\infty}\sharp^{\infty}, q_0)$
- $\blacktriangleright \delta(q,a) = (q',a',.)$

►
$$\delta(r, a) = (r', a', \rightarrow)$$

►
$$\delta(s, a) = (s', a', \leftarrow)$$

- no computation head
- initial configuration $({}^{\infty}\sharp^{\infty}, q_0)$
- $\blacktriangleright \delta(q,a) = (q',a',.)$
- $\blacktriangleright \delta(\mathbf{r}, \mathbf{a}) = (\mathbf{r}', \mathbf{a}', \rightarrow)$
- ► $\delta(s, a) = (s', a', \leftarrow)$

- no computation head
- ▶ initial configuration ($^{\infty} \sharp^{\infty}, q_0$)
- $\blacktriangleright \delta(q,a) = (q',a',.)$

►
$$\delta(r, a) = (r', a', \rightarrow)$$

►
$$\delta(s, a) = (s', a', \leftarrow)$$

Encode Turing machine computations inside Wang tiles:

- ▶ no computation head
- ▶ initial configuration ($^{\infty} \sharp^{\infty}, q_0$)
- $\blacktriangleright \ \delta(q,a) = (q',a',.)$
- ► $\delta(r, a) = (r', a', \rightarrow)$
- ► $\delta(s, a) = (s', a', \leftarrow)$

We want: au admits a tiling iff $\mathcal M$ does not halt on the empty input.

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Une
000000	000	0000	000000000000000000000000000000000000000
Which tilings ?			

We **forbid** tiles with an halting state q_f .

We **forbid** tiles with an halting state q_f .

If ${\mathcal M}$ does not halt on the empty input, we have a tiling.

三日 のへで

We **forbid** tiles with an halting state q_f .

If ${\mathcal M}$ does not halt on the empty input, we have a tiling. But. . .

The Origin Constrained Domino problem

What we have not proven:

Not-Yet-Theorem

The Domino problem is undecidable on \mathbb{Z}^2 .

 Introduction:
 Symbolic Dynamics and tilings
 Dynamical systems?
 Dimension 2 ($G = \mathbb{Z}^2$)
 Undecidability of DP on \mathbb{Z}^2 , proof I
 Undecidability of DP on \mathbb{Z}^2 Undecidability o

The Origin Constrained Domino problem

What we have not proven:

Not-Yet-Theorem

The Domino problem is undecidable on \mathbb{Z}^2 .

What we have proven:

Theorem (Kahr, Moore & Wang 1962, Büchi 1962)

The Origin Constrained Domino problem is undecidable on \mathbb{Z}^2 .

where

Origin Constrained Domino problem

Input: A finite set of Wang tiles τ , a tile $t \in \tau$ **Output:** Yes if there exists a valid tiling by τ with t at the origin, No otherwise.

Build one infinite in time and space computation zone?

► Compactness ⇒ we cannot force one given tile to appear exactly once in every valid tiling

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Build one infinite in time and space computation zone?

► Compactness ⇒ we cannot force one given tile to appear exactly once in every valid tiling

Build arbitrarily big computation zones?

► Compactness ⇒ if we have arbitrarily big *rectangles* in our tilings, then we also have a tiling with no rectangle.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Build one infinite in time and space computation zone?

► Compactness ⇒ we cannot force one given tile to appear exactly once in every valid tiling

Build arbitrarily big computation zones?

► Compactness ⇒ if we have arbitrarily big *rectangles* in our tilings, then we also have a tiling with no rectangle.

One solution: hierarchy of computation zones (thus arbitrarily big zones) that intersect a lot.

Introduction: Symbolic Dynamics and tilings	Dynamical systems ?	Dimension 2 ($G = \mathbb{Z}^2$) 0000	Undecidability of DP on Z ² , proof I Und
Robinson tileset			

The Robinson tileset, where tiles can be rotated and reflected.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction: Symbolic Dynamics and tilings	Dynamical systems ?	Dimension 2 ($G = \mathbb{Z}^2$) 0000	Undecidability of DP on Z ² , proof I Und
Robinson tileset			

The Robinson tileset, where tiles can be rotated and reflected.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proposition

Robinson's tileset admits at least one valid tiling.

Proposition

Robinson's tileset admits at least one valid tiling.

Proof:

• We can build arbitrarily large patterns (called macro-tiles) with the same structure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

• We thus conclude by compactness.

Introduction: Symbolic Dynamics and tilings 000000	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$) 0000	Undecidability of DP on ℤ ² , proof I 000000000000000000000000000000000000	Und
Macro tilos of loval 1				

Macro-tiles of level 1

Macro-tiles of level 1.

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on \mathbb{Z}^2 , proof I	Und
000000	000	0000	000000000000000	
Macro-tiles of level 1				

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

Macro-tiles of level 1.

They behave like large \square .

From macro-tiles of level 1 to macro-tiles of level 2

From macro-tiles of level 1 to macro-tiles of level 2

From macro-tiles of level 1 to macro-tiles of level 2

From macro-tiles of level 1 to macro-tiles of level 2

From macro-tiles of level 1 to macro-tiles of level 2

From macro-tiles of level 1 to macro-tiles of level 2

From macro-tiles of level 1 to macro-tiles of level 2

From macro-tiles of level 1 to macro-tiles of level 2

From macro-tiles of level 1 to macro-tiles of level 2

From macro-tiles of level 1 to macro-tiles of level 2

 Introduction:
 Symbolic Dynamics and tillings
 Dynamical systems?
 Dimension 2 ($G = \mathbb{Z}^2$)
 Undecidability of DP on \mathbb{Z}^2 , proof 1 Undecidability of OO on \mathbb{Z}^2 , proof 1 Undecidability of DP on \mathbb{Z}^2 , proof 1 Undecidability

From macro-tiles of level 1 to macro-tiles of level 2

From macro-tiles of level n to macro-tiles of level n + 1

About Robinson's tiling structure

Hierarchy of squares: squares of level n are gathered by 4 to form a square of level n + 1

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

About Robinson's tiling structure

Hierarchy of squares: squares of level n are gathered by 4 to form a square of level n + 1

Proposition

The only valid tilings by the Robinson tileset form a hierarchy of squares.

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$) 0000	Undecidability of DP on Z ² , proof I Und
Valid tilings (I)			

The two forms in Robinson tileset, cross (bumpy corners) and arms (dented corners).

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000
Valid tilings (I)			

The two forms in Robinson tileset, cross (bumpy corners) and arms (dented corners).

Obviously, two crosses cannot be in contact (neither through an edge nor a vertex) thus a cross must be surrounded by eight arms.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on ℤ ² , proof I ∪	nd
000000	000	0000	000000000000000000000000000000000000000	
λ_{a}				

Valid tilings (II)

You cannot have things like

◆□▶ ◆□▶ ◆□▶ ◆□▶ ④□ ���

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000
Valid tilings (II)			

You cannot have things like

The only possibilities are thus

◆□> <畳> <目> <目> <目> <目> <<=>

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	000000000000000000000000000000000000000
Valid tilings (II)			

You cannot have things like

The only possibilities are thus

So each \prod is part of a macro tile of level 1

that behaves like a big \prod , and so on...

Undecidability of the Domino Problem (II)

Solution

Embed Turing machine computations inside the hierarchy of squares given by Robinson's tiling.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Undecidability of the Domino Problem (II)

Solution

Embed Turing machine computations inside the hierarchy of squares given by Robinson's tiling.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Undecidability of the Domino Problem (II)

Solution

Embed Turing machine computations inside the hierarchy of squares given by Robinson's tiling.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Undecidability of the Domino Problem (II)

Solution

Embed Turing machine computations inside the hierarchy of squares given by Robinson's tiling.

Undecidability of the Domino Problem (II)

Solution

Embed Turing machine computations inside the hierarchy of squares given by Robinson's tiling.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Undecidability of the Domino Problem (II)

Solution

Embed Turing machine computations inside the hierarchy of squares given by Robinson's tiling.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Undecidability of the Domino Problem (II)

Solution

Embed Turing machine computations inside the hierarchy of squares given by Robinson's tiling.

Undecidability of the Domino Problem (II)

Solution

Embed Turing machine computations inside the hierarchy of squares given by Robinson's tiling.

Undecidability of the Domino Problem (II)

Solution

Embed Turing machine computations inside the hierarchy of squares given by Robinson's tiling.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Undecidability of the Domino Problem (II)

Solution

Embed Turing machine computations inside the hierarchy of squares given by Robinson's tiling.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Undecidability of the Domino Problem (II)

Solution

Embed Turing machine computations inside the hierarchy of squares given by Robinson's tiling.

Theorem (Berger 1966, Robinson 1971)

The Domino Problem is undecidable on \mathbb{Z}^2 .

Introduction	Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I	Jnd
000000		000	0000	00000000000000	
<u> </u>					

Outline of the talk.

- Introduction: Symbolic Dynamics and tilings
- 2 Dynamical systems?
- 3 Dimension 2 ($G = \mathbb{Z}^2$)
- 4 Undecidability of DP on \mathbb{Z}^2 , proof I
- **5** Undecidability of DP on \mathbb{Z}^2 , proof II

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$) 0000	Undecidability of DP on Z ² , proof I U	nd
Sketch of the proof				

Idea: encode **piecewise affine maps** inside Wang tiles.

- ► Undecidability of the Mortality problem of Turing machines.
- ▶ Undecidability of the Mortality problem of piecewise affine maps.
- ▶ Reduction from the Mortality problem of piecewise affine maps.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Mortality problem of Turing machines

Take M a deterministic Turing machine with an halting state q_f .

!! configurations of ${\mathcal M}$ do not have finite support !!

A configuration (x, q) is a **non-halting configuration** if it never evolves into the halting state.

Mortality problem of Turing machines

Take M a deterministic Turing machine with an halting state q_f .

!! configurations of ${\mathcal M}$ do not have finite support !!

A configuration (x, q) is a **non-halting configuration** if it never evolves into the halting state.

Mortality problem of Turing machines

 $\label{eq:input: a deterministic Turing machine \mathcal{M} with an halting state.} \\ \textbf{Output: Yes} if \mathcal{M} has a non-halting configuration, No otherwise.} \\$

Theorem (Hooper, 1966)

The Mortality problem of Turing machines is undecidable.

Proof: very technical, uses Minsky 2-counters machines.

Take $f_i : U_i \to \mathbb{R}^2$ for $i \in [1; n]$ some rational affine maps, with U_1, U_2, \ldots, U_n disjoint unit squares with integer corners.

Define $f : \mathbb{R}^2 \to \mathbb{R}^2$ with domain $U = \bigcup_{i=1}^n U_i$ by $\overrightarrow{x} \mapsto f_i(\overrightarrow{x})$ if $\overrightarrow{x} \in U_i$.

A point $\vec{x} \in \mathbb{R}^2$ is an **immortal starting point** for $(f_i)_{i=1...n}$ if for every $n \in \mathbb{N}$, the point $f^n(\vec{x})$ lies inside the domain U.

Mortality problem of piecewise affine maps

Input: a system of rational affine maps f_1, f_2, \ldots, f_n with disjoint unit squares U_1, U_2, \ldots, U_n with integer corners. **Output:** Yes the system has an immortal starting point, No otherwise.

We use the **moving tape** Turing machines model.

Assume that \mathcal{M} has alphabet $A = \{0, 1, \dots, a-1\}$ and states $Q = \{0, 1, \dots, b-1\}.$

Given \mathcal{M} a Turing machine, we construct a system f_1, f_2, \ldots, f_n of piecewise affine maps s.t.

- A configuration of \mathcal{M} is coded by two real numbers.
- A transition of \mathcal{M} is coded by one f_i .
- ▶ $f_1, f_2, ..., f_n$ has an immortal starting point if and only if \mathcal{M} has an immortal configuration.

 Introduction:
 Symbolic Dynamics and tilings
 Dynamical systems?
 Dimension 2 ($G = \mathbb{Z}^2$)
 Undecidability of DP on \mathbb{Z}^2 , proof 1
 Undecidability of DP on \mathbb{Z}^2 <t

Rational piecewise affine maps and Turing machines (II)

Configuration (x, q) is coded by $(\ell, r) \in \mathbb{R}^2$ where

$$\ell = \sum_{i=-1}^{-\infty} M^i x_i$$

and

$$r=Mq+\sum_{i=0}^{\infty}M^{-i}x_i,$$

where M is an integer s.t. M > a and M > b.

Rational piecewise affine maps and Turing machines (II)

Introduction: Symbolic Dynamics and tilings Dynamical systems? Dimension 2 ($G = \mathbb{Z}^2$) Undecidability of DP on \mathbb{Z}^2 , proof 1 Und

Configuration (x, q) is coded by $(\ell, r) \in \mathbb{R}^2$ where

$$\ell = \sum_{i=-1}^{-\infty} M^i x_i$$

and

$$r = Mq + \sum_{i=0}^{\infty} M^{-i} x_i,$$

where M is an integer s.t. M > a and M > b.

The transition $\delta(q,a)=(q',a',
ightarrow)$ is coded by the affine transformation

$$\begin{pmatrix} \ell \\ r \end{pmatrix} \mapsto \begin{pmatrix} \frac{1}{M} & 0 \\ 0 & M \end{pmatrix} \begin{pmatrix} \ell \\ r \end{pmatrix} + \begin{pmatrix} a' \\ M(q' - a - Mq) \end{pmatrix}$$

with domain $[0,1] \times [Mq, Mq + 1]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回□ のへで

▶ A Turing machine *M* is transformed into a system *f*₁,..., *f_n* of rational piecewise affine maps.

• A Turing machine \mathcal{M} is transformed into a system f_1, \ldots, f_n of rational piecewise affine maps.

• \mathcal{M} has an immortal starting point iff f_1, \ldots, f_n has.

- ▶ A Turing machine *M* is transformed into a system *f*₁,..., *f_n* of rational piecewise affine maps.
- \mathcal{M} has an immortal starting point iff f_1, \ldots, f_n has.

Theorem

The Mortality problem of piecewise affine maps is undecidable.

 Introduction:
 Symbolic Dynamics and tilings
 Dynamical systems?
 Dimension 2 ($G = \mathbb{Z}^2$)
 Undecidability of DP on \mathbb{Z}^2 , proof 1
 Undecidability of DP on \mathbb{Z}^2 , p

Rational affine maps inside Wang tiles (I)

Consider $f: \mathbb{R}^2 \to \mathbb{R}^2$ a rational affine map as before. The tile

$$\overrightarrow{w}$$
 \overrightarrow{e}

 \overrightarrow{n}

is said to **compute** the function f if

$$f(\overrightarrow{n}) + \overrightarrow{w} = \overrightarrow{s} + \overrightarrow{e}.$$

 Introduction:
 Symbolic Dynamics and tilings
 Dynamical systems?
 Dimension 2 ($G = \mathbb{Z}^2$)
 Undecidability of DP on \mathbb{Z}^2 , proof 1
 Undecidability of DP on \mathbb{Z}^2 Undecidability of DP on \mathbb{Z}^2

Rational affine maps inside Wang tiles (I)

Consider $f: \mathbb{R}^2 \to \mathbb{R}^2$ a rational affine map as before. The tile

is said to **compute** the function f if

$$f(\overrightarrow{n}) + \overrightarrow{w} = \overrightarrow{s} + \overrightarrow{e}$$

 \overrightarrow{n} \overrightarrow{w} \overrightarrow{e}

And on a row:

$$\overrightarrow{w} = \overrightarrow{w}_1 \underbrace{\boxed{\overrightarrow{n}_1 \quad \overrightarrow{n}_2}}_{\overrightarrow{s}_1 \quad \overrightarrow{s}_2} \cdots \underbrace{\boxed{\overrightarrow{n}_{k-1} \quad \overrightarrow{n}_k}}_{\overrightarrow{s}_{k-1} \quad \overrightarrow{s}_k} \overrightarrow{e}_k = \overrightarrow{e}$$

$$f\left(\frac{\overrightarrow{n}_1 + \dots + \overrightarrow{n}_k}{k}\right) + \frac{1}{k}\overrightarrow{w} = \frac{\overrightarrow{s}_1 + \dots + \overrightarrow{s}_k}{k} + \frac{1}{k}\overrightarrow{e}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

 Introduction:
 Symbolic Dynamics and tilings
 Dynamical systems?
 Dimension 2 ($G = \mathbb{Z}^2$)
 Undecidability of DP on \mathbb{Z}^2 , proof 1
 Undecidability of DP on \mathbb{Z}^2 , p

Rational affine maps inside Wang tiles (II)

For $x \in \mathbb{R}$, a **representation of** x is a sequence of integers $(x_k)_{k \in \mathbb{Z}}$ s.t.

• $\forall k \in \mathbb{Z}, x_k \in \{\lfloor x \rfloor, \lfloor x \rfloor + 1\};$

• $\forall k \in \mathbb{Z}$,

$$\lim_{n\to\infty}\frac{x_{k-n}+\cdots+x_{k+n}}{2n+1}=x.$$

 Introduction:
 Symbolic Dynamics and tilings
 Dynamical systems?
 Dimension 2 ($G = \mathbb{Z}^2$)
 Undecidability of DP on \mathbb{Z}^2 , proof 1
 Undecidability of DP on \mathbb{Z}^2 Undecidability of DP on \mathbb{Z}^2

Rational affine maps inside Wang tiles (II)

For $x \in \mathbb{R}$, a representation of x is a sequence of integers $(x_k)_{k \in \mathbb{Z}}$ s.t.

• $\forall k \in \mathbb{Z}, x_k \in \{\lfloor x \rfloor, \lfloor x \rfloor + 1\};$ • $\forall k \in \mathbb{Z},$ $\lim_{n \to \infty} \frac{x_{k-n} + \dots + x_{k+n}}{2n+1} = x.$

Define $B_k(x) = \lfloor kx
floor - \lfloor (k-1)x
floor$ for every $k \in \mathbb{Z}$. Then $B(x) = (B_k(x))_{k \in \mathbb{Z}}$

is the **balanced representation of** x.

 Introduction:
 Symbolic Dynamics and tilings
 Dynamical systems?
 Dimension 2 ($G = \mathbb{Z}^2$)
 Undecidability of DP on \mathbb{Z}^2 , proof 1
 Undecidability of DP on \mathbb{Z}^2 Undecidability of DP on \mathbb{Z}^2

Rational affine maps inside Wang tiles (II)

For $x \in \mathbb{R}$, a representation of x is a sequence of integers $(x_k)_{k \in \mathbb{Z}}$ s.t.

• $\forall k \in \mathbb{Z}, x_k \in \{\lfloor x \rfloor, \lfloor x \rfloor + 1\};$ • $\forall k \in \mathbb{Z},$ $\lim_{n \to \infty} \frac{x_{k-n} + \dots + x_{k+n}}{2n+1} = x.$

Define
$$B_k(x) = \lfloor kx
floor - \lfloor (k-1)x
floor$$
 for every $k \in \mathbb{Z}$. Then $B(x) = (B_k(x))_{k \in \mathbb{Z}}$

is the **balanced representation of** x.

For $\overrightarrow{x} \in \mathbb{R}^2$ and $k \in \mathbb{Z}$, define $B_k(\overrightarrow{x})$ coordinate by coordinate.

If
$$\overrightarrow{x}$$
 is in $U_i = [n, n+1] \times [m, m+1]$, then
 $B_k(\overrightarrow{x}) \in \{(n, m), (n, m+1), (n+1, m), (n+1, m+1)\}$ for every $k \in \mathbb{Z}$

Rational affine maps inside Wang tiles (III)

The tile set corresponding to $f_i(\overrightarrow{x}) = M\overrightarrow{x} + \overrightarrow{b}$ consists of tiles

$$f_{i}(A_{k-1}(\overrightarrow{x})) - A_{k-1}(f_{i}(\overrightarrow{x})) = \begin{bmatrix} B_{k}(\overrightarrow{x}) \\ \\ +(k-1)\overrightarrow{b} \end{bmatrix} f_{i}(A_{k}(\overrightarrow{x})) - A_{k}(f_{i}(\overrightarrow{x})) \\ +k\overrightarrow{b} \\ B_{k}(f_{i}(\overrightarrow{x})) \end{bmatrix}$$

for every $k \in \mathbb{Z}$ and $\overrightarrow{x} \in U_i$.

Rational affine maps inside Wang tiles (III)

The tile set corresponding to $f_i(\vec{x}) = M\vec{x} + \vec{b}$ consists of tiles

$$f_{i}(A_{k-1}(\overrightarrow{x})) - A_{k-1}(f_{i}(\overrightarrow{x})) = \begin{bmatrix} B_{k}(\overrightarrow{x}) \\ \\ +(k-1)\overrightarrow{b} \end{bmatrix} f_{i}(A_{k}(\overrightarrow{x})) - A_{k}(f_{i}(\overrightarrow{x})) \\ +k\overrightarrow{b} \\ B_{k}(f_{i}(\overrightarrow{x})) \end{bmatrix}$$

for every $k \in \mathbb{Z}$ and $\overrightarrow{x} \in U_i$.

Since U_i is bounded and f_i rational, there are **finitely many** tiles !

Rational affine maps inside Wang tiles (IV)

- A system of rational affine maps f_1, f_2, \ldots, f_n defined on U_1, U_2, \ldots, U_n with integer corners.
- Each $f_i \rightsquigarrow$ a finite set of tiles T_i
- Set of tiles T = ∪T_i with additional markings (every row tiled by a single T_i)
- ▶ *T* admits a tiling of the plane iff $f_1, f_2, ..., f_n$ has an immortal point.

Rational affine maps inside Wang tiles (IV)

- A system of rational affine maps f_1, f_2, \ldots, f_n defined on U_1, U_2, \ldots, U_n with integer corners.
- Each $f_i \rightsquigarrow$ a finite set of tiles T_i
- Set of tiles $T = \bigcup T_i$ with additional markings (every row tiled by a single T_i)
- ▶ *T* admits a tiling of the plane iff $f_1, f_2, ..., f_n$ has an immortal point.

Theorem (Kari, 2007)

The Domino problem is undecidable on \mathbb{Z}^2 .

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I Und
000000	000	0000	00000000000000

Domino problem and its variants

Theorem (Kahr, Moore & Wang 1962, Büchi 1962)

The Origin Constrained Domino problem is undecidable on \mathbb{Z}^2 .

Theorem (Berger 1966, Robinson 1971, Kari, 2007)

The **Domino problem** is undecidable on \mathbb{Z}^2 .

Theorem (Gurevich & Koryakov, 1972)

The **Periodic Domino problem** is undecidable on \mathbb{Z}^2 .

Theorem (Kari, 1991, Lukkarila 2009)

The **Deterministic Domino problem** is undecidable on \mathbb{Z}^2 .

Theorem (Gurevich & Koryakov, 1972)

The Periodic Domino problem is undecidable on \mathbb{Z}^2 .

Proof: on the blackboard, with

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

 \Rightarrow see G. Theyssier's talk for an example of application.

Theorem (Gurevich & Koryakov, 1972)

The Periodic Domino problem is undecidable on \mathbb{Z}^2 .

Proof: on the blackboard, with

 \Rightarrow see G. Theyssier's talk for an example of application.

Theorem (Kari, 1991, Lukkarila 2009)

The **Deterministic Domino problem** is undecidable on \mathbb{Z}^2 .

 \Rightarrow see G. Theyssier's talk for an example of application.

Introduction: Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on Z ² , proof I	Jnd
000000	000	0000	00000000000000	
Conclusion				

- Dimension 1: good representation with graphs/matrices for SFTs/sofic subshifts.
- ▶ Dimension 2: much more complicated (encode computational models inside Wang tiles ⇒ undecidability results)

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

▶ What about other f.g. groups ?

Introduction:	Symbolic Dynamics and tilings	Dynamical systems?	Dimension 2 ($G = \mathbb{Z}^2$)	Undecidability of DP on \mathbb{Z}^2 , proof I	Und
000000		000	0000	00000000000000	
Conclu	ision				

- Dimension 1: good representation with graphs/matrices for SFTs/sofic subshifts.
- ▶ Dimension 2: much more complicated (encode computational models inside Wang tiles ⇒ undecidability results)
- ▶ What about other f.g. groups ?

Thank you for your attention !!

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

$$X_{ ext{even}} = ig\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size } ig\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

$$X_{ ext{even}} = ig\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size } ig\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

etc. . .

$$X_{ ext{even}} = ig\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size } ig\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Proof: Take for instance
$$k = 4$$
 (for \mathbb{Z}^2 or $BS(m, n)$)
 $A_4 = \left\{ \boxed{1}, \boxed{\bullet}, \boxed{\bullet} \right\} + \text{rotations}$

and chose the letter-to-letter map

$$\phi\left(\begin{array}{c} \end{array}\right) = 0 \quad \phi\left(\begin{array}{c} \bullet \end{array}\right) = \phi\left(\begin{array}{c} \bullet \bullet \end{array}\right) = 1$$

$$X_{ ext{even}} = ig\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size } ig\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Proof: Take for instance
$$k = 4$$
 (for \mathbb{Z}^2 or $BS(m, n)$)
 $A_4 = \left\{ \boxed{1}, \boxed{\bullet}, \boxed{\bullet} \right\} + \text{rotations}$

and chose the letter-to-letter map

$$\phi\left(\begin{array}{c} \end{array}\right) = 0 \quad \phi\left(\begin{array}{c} \bullet \end{array}\right) = \phi\left(\begin{array}{c} \bullet \bullet \end{array}\right) = 1$$

Green components have even size (handshaking lemma) $\Rightarrow \phi(X_k) \subseteq X_{even}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

$$X_{ ext{even}} = ig\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size } ig\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Conversely, for some $x \in X_{even}$, consider C a maximal CC of 1.

		1	1	1	1		
				1	1	1	
	1			1	1	1	
1	1	1					

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

$$X_{ ext{even}} = ig\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size } ig\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Conversely, for some $x \in X_{even}$, consider C a maximal CC of 1.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

• Chose \mathcal{T} a tree covering of \mathcal{C} .

$$X_{ ext{even}} = ig\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size } ig\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Conversely, for some $x \in X_{even}$, consider C a maximal CC of 1.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

- Chose \mathcal{T} a tree covering of \mathcal{C} .
- \blacktriangleright If all vertices in ${\cal T}$ have odd degree, then we are done.

$$X_{ ext{even}} = ig\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size } ig\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Conversely, for some $x \in X_{even}$, consider C a maximal CC of 1.

- Chose \mathcal{T} a tree covering of \mathcal{C} .
- \blacktriangleright If all vertices in ${\cal T}$ have odd degree, then we are done.
- Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ
$$X_{ ext{even}} = ig\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size } ig\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Conversely, for some $x \in X_{even}$, consider C a maximal CC of 1.

- Chose \mathcal{T} a tree covering of \mathcal{C} .
- \blacktriangleright If all vertices in ${\cal T}$ have odd degree, then we are done.
- Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.

$$X_{ ext{even}} = ig\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size } ig\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Conversely, for some $x \in X_{even}$, consider C a maximal CC of 1.

- Chose \mathcal{T} a tree covering of \mathcal{C} .
- \blacktriangleright If all vertices in ${\cal T}$ have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.

 \blacktriangleright In $\mathcal{T}\setminus\{v\},$ odd number of trees with odd cardinality: connect v to them.

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size }
ight\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Conversely, for some $x \in X_{\texttt{even}}$, consider $\mathcal C$ a maximal CC of 1.

- Chose \mathcal{T} a tree covering of \mathcal{C} .
- \blacktriangleright If all vertices in ${\cal T}$ have odd degree, then we are done.
- Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.

▶ In $\mathcal{T} \setminus \{v\}$, odd number of trees with odd cardinality: connect v to them.

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size }
ight\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Conversely, for some $x \in X_{\texttt{even}}$, consider $\mathcal C$ a maximal CC of 1.

- Chose \mathcal{T} a tree covering of \mathcal{C} .
- \blacktriangleright If all vertices in ${\cal T}$ have odd degree, then we are done.
- Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.

▶ In $\mathcal{T} \setminus \{v\}$, odd number of trees with odd cardinality: connect v to them.

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size }
ight\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Conversely, for some $x \in X_{\texttt{even}}$, consider $\mathcal C$ a maximal CC of 1.

- Chose \mathcal{T} a tree covering of \mathcal{C} .
- \blacktriangleright If all vertices in ${\cal T}$ have odd degree, then we are done.
- Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.

▶ In $\mathcal{T} \setminus \{v\}$, odd number of trees with odd cardinality: connect v to them.

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size }
ight\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Conversely, for some $x \in X_{\texttt{even}}$, consider $\mathcal C$ a maximal CC of 1.

- Chose \mathcal{T} a tree covering of \mathcal{C} .
- \blacktriangleright If all vertices in ${\cal T}$ have odd degree, then we are done.
- Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.

▶ In $\mathcal{T} \setminus \{v\}$, odd number of trees with odd cardinality: connect v to them.

$$X_{ ext{even}} = \left\{ x \in \{0,1\}^{\mathcal{G}} | ext{ finite CC of 1's have even size }
ight\}.$$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Conversely, for some $x \in X_{\texttt{even}}$, consider $\mathcal C$ a maximal CC of 1.

- Chose \mathcal{T} a tree covering of \mathcal{C} .
- \blacktriangleright If all vertices in ${\cal T}$ have odd degree, then we are done.
- Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.

▶ In $\mathcal{T} \setminus \{v\}$, odd number of trees with odd cardinality: connect v to them.

Mirror subshift in \mathbb{Z}^2

Let
$$A = \{ \Box, \blacksquare, \blacksquare \}$$
 and $X_{\text{mirror}} = X_{F_{\text{mirror}}} \subset A^{\mathbb{Z}^2}$ where
 $F_{\text{mirror}} = \{ \Box, \blacksquare, \blacksquare, \blacksquare \} \cup \bigcup_{w \in A^*} \{ \blacksquare w \blacksquare, \blacksquare w \blacksquare \tilde{w} \Box, \Box w \blacksquare \tilde{w} \blacksquare \}$

where \tilde{w} denotes the mirror image of the word w.

The mirror subshift is not sofic

(4 미) (4 回) (1 =)