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Tilings?

"Cover the plane with (arbitrarily many) copies of some basic tiles."
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1 Introduction: Symbolic Dynamics and tilings

2 Dynamical systems?

3 Dimension 2 (G = Z2)

4 Undecidability of DP on Z2, proof I

5 Undecidability of DP on Z2, proof II
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Configurations, patterns and cylinders

I Let A be a finite alphabet, G be a finitely generated group.
I Colorings x : G → A are called configurations.
I A pattern is a finite configuration p : S → A.

Examples:
A = { , }
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The Cantor space AG?

I Endowed with the pro-discrete topology AG is a compact and
metrizable set.

I Cylinders form a clopen basis

[a]g =
{
x ∈ AG | xg = a

}
.

I A pattern is a finite intersection of cylinders, or equivalently a finite
configuration p : S → A

I A metric for the cylinder topology is

d(x , y) = 2− inf{|g | | g∈G : xg 6=yg},

where |g | is the length of the shortest path from 1G to g in Γ(G , S).
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Subshifts: topological definition

The shift σ is the natural action of G on AG by translation:

σg (x)h = xg−1·h for all x ∈ AG .

(Topological) Definition: subshift

A subshift is a closed and σ-invariant subset of AG .

Examples:

I X =
{
x ∈ {0, 1}Z | no two consecutive 1’s in x

}
?

I X =
{
x ∈ {0, 1}Z | xi = 0⇒ i is even

}
?

I X =
{
x ∈ {0, 1}Z | finite blocks of 1’s are of even length

}
?

I X =
{
x ∈ {0, 1}Z | finite blocks of 1’s are of prime length

}
?

I X =
{
x ∈ {0, 1}G | |{g ∈ G : xg = 1}| = 1

}
?

I X =
{
x ∈ {0, 1}G | |{g ∈ G : xg = 1}| ≤ 1

}
?
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Subshifts: combinatorial definition

(Combinatorial) Definition: subshift

Let F be a set of finite patterns. The subshift defined by the set of
forbidden patterns F is the set

XF =
{
x ∈ AG , no pattern of F appears in x

}
.

Proposition

The topological and combinatorial definitions coincide.
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Compactness of AG

Proposition

The Cantor space AG is compact for the pro-discrete topology.

Concretely:
I XF is non-empty iff there exist arbitrarily big finite patterns that

avoid F (for instance every ball Bn can be colored avoiding F ).
I If there exist arbitrarily big finite patterns with no letter a that avoid

F , there exists a configuration in XF with no letter a.
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Subshifts: at the interplay between several domains

I Dynamical Systems (Symbolic Dynamics)
I Tilings theory (by Wang tiles)
I Cellular automata (see next course by G. Theyssier)
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Discrete dynamical systems

(X ,F ) is a discrete dynamical system if:
I X is a topological compact space, called the phase space
I F is a continuous map : X → X

x
•
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Discrete dynamical systems

(X ,F ) is a discrete dynamical system if:
I X is a topological compact space, called the phase space
I F is a continuous map : X → X

x
•

F (x)
•

F 2(x)
•

F 3(x)
•

F 4(x)
•

F 5(x)
•
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Coding of the orbits

I X =
⋃n

i=1 Xi a partition of the phase space X
I a color ai associated with each Xi
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Coding of the orbits

I X =
⋃n

i=1 Xi a partition of the phase space X
I a color ai associated with each Xi

I orbit (F n(x))n∈N coded by a sequence y ∈ {a1, . . . , an}N

•

• •

•

•

•

. . .
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Dynamical Systems and subshifts

I If the dynamical system (X ,F ) is invertible and expansive, then
X =

⋃n
i=1 Xi can be chosen so that the set of coding of orbits

X̃ =
{
y ∈ {a1, . . . , an}Z | ∃x ∈ X ,∀k ∈ Z, F k(x) ∈ Xi

}
is a subshift in one-to-one correspondence with (X ,F ).

I Dynamical properties of the original system (X ,F ) can be read on
the corresponding subshift (X̃ , σ).

I If the partition X =
⋃n

i=1 Xi is well-chosen (Markov partition), the
subshift X̃ is an SFT!
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Classes of subshifts: Subshifts of finite type (SFT)

I Sets of configurations that avoid a finite set of forbidden patterns.
I For instance X{ , , } contains the following configurations

(in 2D):

Definition: subshift of finite type (SFT)

A subshift of finite type (SFT) is a subshift that can be defined by a
finite set of forbidden patterns.

I simplest class with respect to the combinatorial definition
I 2D-SFT ≡ Wang tilings
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Classes of subshifts: Sofic subshifts

A factor map Φ : AG → BG is given by a local map φ (or equivalently Φ is a
continuous and σ-commuting map):

x ∈ AZ2
Φ(x) ∈ BZ2

Definition: sofic subshift

A sofic subshift is the factor of an SFT.

I Recodings of SFT, with local neighborhood.

I In 1D (G = Z), sofic subshifts are exactly those recognized by finite
automata.
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Examples

Which subshifts are SFTs? sofic subshifts?

Examples:

I X =
{
x ∈ {0, 1}Z | no two consecutive 1’s in x

}
?

I X =
{
x ∈ {0, 1}Z | finite blocks of 1’s are of even length

}
?

I X =
{
x ∈ {0, 1}Z | finite blocks of 1’s are of prime length

}
?

I X =
{
x ∈ {0, 1}G | |{g ∈ G : xg = 1}| ≤ 1

}
?
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Big questions in Symbolic Dynamics

I Classify SFTs/sofic subshifts up to conjugacy.
I Find conjugacy invariants.
I Find factors of SFTs with equal entropy?
I Decide dynamical properties? (injectivity, surjectivity,

expansiveness. . . )
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Dimension 1

Given a subshift X ⊂ AZ, one can consider its language L(X ) defined by

L(X ) =
⋃
n∈N
Ln(X )

where
Ln(X ) = {w ∈ An | ∃x ∈ X , xi = wi ∀i = 1 . . . n} .

Remark: We have X = XL(X ), and L(X ) is the biggest (for inclusion)
set of patterns that defines X .
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Graph representation of SFTs and sofic subshifts

Proposition

A subshift X is sofic iff its language L(X ) is rational.

Proposition

A subshift X is sofic iff it is the set of labels of bi-infinite paths of a finite
edge-labeled graph.

Examples:
I X =

{
x ∈ {0, 1}Z | no two consecutive 1’s in x

}
?

I X =
{
x ∈ {0, 1}Z | finite blocks of 1’s are of even length

}
?

I X =
{
x ∈ {0, 1}Z | |{i ∈ Z : xi = 1}| ≤ 1

}
?
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What can be read on the graph?

I Existence of a configuration in XF .
I Periodic configurations.
I Compute the entropy from the graph matrix.
I etc. . .
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SFTs and Wang tiles

We now fix G = Z2.

Wang tiles

Neighborhood rule

X ×

Xτ set of valid tilings by τ
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The Domino problem

SFT ≈ Xτ
I Tilings by Wang tiles can be seen as an SFT.
I Every SFT can be encoded inside a finite set of Wang tiles

→

Domino problem on Z2

Input: A finite set of Wang tiles τ .
Output: Yes if there exists a valid tiling by τ , No otherwise.
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Periodicity

We can define two notions of periodic configuration:
I A configuration x ∈ AZ2

is weakly periodic if x admits a non-trivial
direction −→u of periodicity.

I A configuration x ∈ AZ2
is strongly periodic if x admits two

non-collinear directions −→u ,−→v of periodicity.

Proposition

On Z2, if an SFT contains a weakly periodic configuration, then it
contains a strongly periodic one.

Proof: on the blackboard.
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Domino problem and periodicity on Z2

Wang’s conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.



Introduction: Symbolic Dynamics and tilings Dynamical systems? Dimension 2 (G = Z2) Undecidability of DP on Z2, proof I Undecidability of DP on Z2, proof II

Domino problem and periodicity on Z2

Wang’s conjecture (1961)

A non-empty SFT contains a periodic configuration.
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Domino problem and periodicity on Z2

Wang’s conjecture (1961)

A non-empty SFT contains a periodic configuration.

Suppose Wang’s conjecture is true. Then you can decide DP !

Semi-algorithm 1:
1 gives a finite periodic pattern, if it exists
2 loops otherwise

Semi-algorithm 2:
1 gives an integer n so that there is no [1; n]× [1; n] locally admissible

pattern, if it exists
2 loops otherwise
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Domino problem and periodicity on Z2

Wang’s conjecture (1961)

A non-empty SFT contains a periodic configuration.

Suppose Wang’s conjecture is true. Then you can decide DP !

Semi-algorithm 1:
1 gives a finite periodic pattern, if it exists
2 loops otherwise

Semi-algorithm 2:
1 gives an integer n so that there is no [1; n]× [1; n] locally admissible

pattern, if it exists
2 loops otherwise

Consequence

The undecidability of DP implies existence of an aperiodic SFT.
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Attempt to prove undecidability of DP

Idea: encode Turing machines inside Wang tiles.

I Undecidability of the Halting problem of Turing machines.
I Reduction from the Halting problem of Turing machines.
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Turing machines

δ(q, x)
Symbol x

a b ‖ ]
St
at
e

q
q0 ⊥ ⊥ ⊥ (qb+ , a,→)

qa+ ⊥ (qb++ , a,→) ⊥ ⊥
qb+ ⊥ ⊥ ⊥ (q‖, b,→)

qb++ ⊥ (qb++ , b,→) (qb+ , b,→) ⊥
q‖ (qa+ , a,→) (q‖, b,←) (q‖, ‖,←) (q‖, ‖, ·)

] ] ] ] ] ] ] ] ] ]

q0
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Theorem (Turing, 1936)

The Halting problem (to know whether a Turing machineM halts on
input w or not) is undecidable.

Theorem

The Blank tape Halting problem (to know whether a Turing machineM
halts on the empty input) is undecidable.
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Turing machines and Wang tiles

Encode Turing machine computations inside Wang tiles:
I no computation head
I initial configuration (∞]∞, q0)
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We want: τ admits a tiling iff M does not halt on the empty input.
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Which tilings ?
We forbid tiles with an halting state qf .

IfM does not halt on the empty input, we have a tiling.
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The Origin Constrained Domino problem

What we have not proven:

Not-Yet-Theorem

The Domino problem is undecidable on Z2.

What we have proven:

Theorem (Kahr, Moore & Wang 1962, Büchi 1962)

The Origin Constrained Domino problem is undecidable on Z2.

where

Origin Constrained Domino problem

Input: A finite set of Wang tiles τ , a tile t ∈ τ
Output: Yes if there exists a valid tiling by τ with t at the origin, No
otherwise.
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How to initialize computations ?

Build one infinite in time and space computation zone?
I Compactness ⇒ we cannot force one given tile to appear exactly

once in every valid tiling

Build arbitrarily big computation zones?
I Compactness ⇒ if we have arbitrarily big rectangles in our tilings,

then we also have a tiling with no rectangle.

One solution: hierarchy of computation zones (thus arbitrarily big zones)
that intersect a lot.
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Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.
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Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.
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Existence of a valid tiling

Proposition

Robinson’s tileset admits at least one valid tiling.

Proof:
We can build arbitrarily large patterns (called macro-tiles) with the
same structure.
We thus conclude by compactness.
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Macro-tiles of level 1

Macro-tiles of level 1.

They behave like large .
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From macro-tiles of level 1 to macro-tiles of level 2
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From macro-tiles of level 1 to macro-tiles of level 2
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From macro-tiles of level 1 to macro-tiles of level 2
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From macro-tiles of level n to macro-tiles of level n + 1

⇒
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About Robinson’s tiling structure

Hierarchy of squares: squares of level n are gathered by 4 to form a
square of level n + 1

Proposition

The only valid tilings by the Robinson tileset form a hierarchy of squares.
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Valid tilings (I)

The two forms in Robinson tileset, cross (bumpy corners) and arms
(dented corners).

Obviously, two crosses cannot be in contact (neither through an edge nor
a vertex) thus a cross must be surrounded by eight arms.
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Valid tilings (II)
You cannot have things like

The only possibilities are thus
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Valid tilings (III)

So each is part of a macro tile of level 1

that behaves like a big , and so on. . .
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Undecidability of the Domino Problem (II)

Solution
Embed Turing machine computations inside the hierarchy of squares
given by Robinson’s tiling.
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Undecidability of the Domino Problem (II)

Solution
Embed Turing machine computations inside the hierarchy of squares
given by Robinson’s tiling.
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Undecidability of the Domino Problem (II)

Solution
Embed Turing machine computations inside the hierarchy of squares
given by Robinson’s tiling.

Theorem (Berger 1966, Robinson 1971)

The Domino Problem is undecidable on Z2.
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Outline of the talk.

1 Introduction: Symbolic Dynamics and tilings

2 Dynamical systems?

3 Dimension 2 (G = Z2)

4 Undecidability of DP on Z2, proof I

5 Undecidability of DP on Z2, proof II
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Sketch of the proof

Idea: encode piecewise affine maps inside Wang tiles.

I Undecidability of the Mortality problem of Turing machines.
I Undecidability of the Mortality problem of piecewise affine maps.
I Reduction from the Mortality problem of piecewise affine maps.
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Mortality problem of Turing machines

TakeM a deterministic Turing machine with an halting state qf .

!! configurations of M do not have finite support !!

A configuration (x , q) is a non-halting configuration if it never evolves
into the halting state.

Mortality problem of Turing machines

Input: a deterministic Turing machineM with an halting state.
Output: Yes ifM has a non-halting configuration, No otherwise.

Theorem (Hooper, 1966)

The Mortality problem of Turing machines is undecidable.

Proof: very technical, uses Minsky 2-counters machines.
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Rational piecewise affine maps in R2

Take fi : Ui → R2 for i ∈ [1; n] some rational affine maps, with
U1,U2, . . . ,Un disjoint unit squares with integer corners.

Define f : R2 → R2 with domain U = ∪n
i=1Ui by

−→x 7→ fi (−→x ) if −→x ∈ Ui .

A point −→x ∈ R2 is an immortal starting point for (fi )i=1...n if for every
n ∈ N, the point f n(−→x ) lies inside the domain U.

Mortality problem of piecewise affine maps

Input: a system of rational affine maps f1, f2, . . . , fn with disjoint unit
squares U1,U2, . . . ,Un with integer corners.
Output: Yes the system has an immortal starting point, No otherwise.
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Rational piecewise affine maps and Turing machines (I)

We use the moving tape Turing machines model.

Assume thatM has alphabet A = {0, 1, . . . , a− 1} and states
Q = {0, 1, . . . , b − 1}.

GivenM a Turing machine, we construct a system f1, f2, . . . , fn of
piecewise affine maps s.t.
I A configuration ofM is coded by two real numbers.
I A transition ofM is coded by one fi .
I f1, f2, . . . , fn has an immortal starting point if and only ifM has an

immortal configuration.
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Rational piecewise affine maps and Turing machines (II)

Configuration (x , q) is coded by (`, r) ∈ R2 where

` =
−∞∑
i=−1

M ixi

and

r = Mq +
∞∑
i=0

M−ixi ,

where M is an integer s.t. M > a and M > b.

The transition δ(q, a) = (q′, a′,→) is coded by the affine transformation(
`
r

)
7→
( 1

M 0
0 M

)(
`
r

)
+

(
a′

M(q′ − a−Mq)

)
with domain [0, 1]× [Mq,Mq + 1].
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Rational piecewise affine maps and Turing machines (II)

I A Turing machineM is transformed into a system f1, . . . , fn of
rational piecewise affine maps.

I M has an immortal starting point iff f1, . . . , fn has.

Theorem
The Mortality problem of piecewise affine maps is undecidable.
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Rational affine maps inside Wang tiles (I)

Consider f : R2 → R2 a rational affine map as before. The tile
−→n

−→s

−→w −→e

is said to compute the function f if

f (−→n ) +−→w = −→s +−→e .

And on a row:

−→w = −→w 1

−→n 1

−→s 1

−→n 2

−→s 2

. . .

−→n k−1

−→s k−1

−→n k

−→s k

−→e k = −→e

f
(−→n 1 + · · ·+−→n k

k

)
+

1
k
−→w =

−→s 1 + · · ·+−→s k

k
+

1
k
−→e
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Rational affine maps inside Wang tiles (II)

For x ∈ R, a representation of x is a sequence of integers (xk)k∈Z s.t.
∀k ∈ Z, xk ∈ {bxc, bxc+ 1};
∀k ∈ Z,

lim
n→∞

xk−n + · · ·+ xk+n

2n + 1
= x .

Define Bk(x) = bkxc − b(k − 1)xc for every k ∈ Z. Then

B(x) = (Bk(x))k∈Z

is the balanced representation of x .

For −→x ∈ R2 and k ∈ Z, define Bk(−→x ) coordinate by coordinate.

If −→x is in Ui = [n, n + 1]× [m,m + 1], then
Bk(−→x ) ∈ {(n,m), (n,m + 1), (n + 1,m), (n + 1,m + 1)} for every k ∈ Z.
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Rational affine maps inside Wang tiles (III)

The tile set corresponding to fi (−→x ) = M−→x +
−→
b consists of tiles

Bk(−→x )

Bk(fi (−→x ))

fi (Ak−1(−→x ))− Ak−1(fi (−→x ))

+(k − 1)
−→
b

fi (Ak(−→x ))− Ak(fi (−→x ))

+k
−→
b

for every k ∈ Z and −→x ∈ Ui .

Since Ui is bounded and fi rational, there are finitely many tiles !
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Rational affine maps inside Wang tiles (IV)

I A system of rational affine maps f1, f2, . . . , fn defined on
U1,U2, . . . ,Un with integer corners.

I Each fi  a finite set of tiles Ti

I Set of tiles T = ∪Ti with additional markings (every row tiled by a
single Ti )

I T admits a tiling of the plane iff f1, f2, . . . , fn has an immortal point.

Theorem (Kari, 2007)

The Domino problem is undecidable on Z2.
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Domino problem and its variants

Theorem (Kahr, Moore & Wang 1962, Büchi 1962)

The Origin Constrained Domino problem is undecidable on Z2.

Theorem (Berger 1966, Robinson 1971, Kari, 2007)

The Domino problem is undecidable on Z2.

Theorem (Gurevich & Koryakov, 1972)

The Periodic Domino problem is undecidable on Z2.

Theorem (Kari, 1991, Lukkarila 2009)

The Deterministic Domino problem is undecidable on Z2.
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The Periodic Domino problem

Theorem (Gurevich & Koryakov, 1972)

The Periodic Domino problem is undecidable on Z2.

Proof: on the blackboard, with

τ� = { }

⇒ see G. Theyssier’s talk for an example of application.

Theorem (Kari, 1991, Lukkarila 2009)

The Deterministic Domino problem is undecidable on Z2.

⇒ see G. Theyssier’s talk for an example of application.
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Conclusion

I Dimension 1: good representation with graphs/matrices for
SFTs/sofic subshifts.

I Dimension 2: much more complicated (encode computational
models inside Wang tiles ⇒ undecidability results)

I What about other f.g. groups ?

Thank you for your attention !!
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Example: the even shift
Xeven =

{
x ∈ {0, 1}G | finite CC of 1’s have even size

}
.

Proposition

The even shift Xeven is sofic for every f.g. group G .



Example: the even shift
Xeven =

{
x ∈ {0, 1}G | finite CC of 1’s have even size

}
.

Proposition

The even shift Xeven is sofic for every f.g. group G .

Proof: Consider the G -SFT Xk , where k = |B1|, with alphabet

A3 = { , , } + rotations

A4 = { , , } + rotations

A5 = { , , , , } + rotations

A6 = { , , , , } + rotations and reflections

etc. . .



Example: the even shift
Xeven =
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x ∈ {0, 1}G | finite CC of 1’s have even size

}
.

Proposition

The even shift Xeven is sofic for every f.g. group G .

Proof: Take for instance k = 4 (for Z2 or BS(m, n))

A4 = { , , } + rotations

and chose the letter-to-letter map

φ( ) = 0 φ( ) = φ ( ) = 1



Example: the even shift
Xeven =

{
x ∈ {0, 1}G | finite CC of 1’s have even size

}
.

Proposition

The even shift Xeven is sofic for every f.g. group G .

Proof: Take for instance k = 4 (for Z2 or BS(m, n))

A4 = { , , } + rotations

and chose the letter-to-letter map

φ( ) = 0 φ( ) = φ ( ) = 1

Green components have even size (handshaking lemma)⇒ φ(Xk) ⊆ Xeven

φ−→

1 1 1
1 1 1 1

1 1 1
1 1 1 1
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I Chose T a tree covering of C.
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I In T \ {v}, odd number of trees with odd cardinality: connect v to
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Proposition

The even shift Xeven is sofic for every f.g. group G .

Conversely, for some x ∈ Xeven, consider C a maximal CC of 1.

I Chose T a tree covering of C.
I If all vertices in T have odd degree, then we are done.
I Otherwise, delete a vertex v with even degree ⇒ forest of CC of 1.
I In T \ {v}, odd number of trees with odd cardinality: connect v to
them.
I Iterate the process to get rid of all vertices with even degree, and
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Mirror subshift in Z2

Let A = { , , } and Xmirror = XFmirror ⊂ AZ2
where

Fmirror =
{

, , ,
}
∪
⋃

w∈A∗

{ w , w w̃ , w w̃ }

where w̃ denotes the mirror image of the word w .



The mirror subshift is not sofic

y1 ∈ Xmirror

P1P̃1

y2 ∈ Xmirror

P2P̃2

ỹ /∈ Xmirror

P2P̃1

x1 ∈ X

Q1

x2 ∈ X

Q2

x̃ ∈ X

Q2

↓ φ ↓ φ ↓ φ
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