Logic, Automata and Games

Jacques Duparc

Unil

UNIL | Université de Lausanne

EJCIM 2017

EJCIM, 23-27 January 2017

J. Duparc (Unil & (M.))

Logic, Automata and Games

Lyon, 23-27 January 2017

A E > A E >

1 / 97

References [1]

- K. R. Apt and E. Grädel. *Lectures in game theory for computer scientists*. Cambridge University Press, 2011.
- R. Cori, D. Lascar, and J.-L. P. Krivine. Logique mathématique, tome 1 : Calcul propositionnel; algèbre de Boole; calcul des prédicats, volume 1. Dunod, Paris, 2003.
- **O**. Finkel. Borel ranks and Wadge degrees of context free ω -languages. *Mathematical Structures in Computer Science*, 16(05):813–840, 2006.
- E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to Current Research, volume 2500. Springer-Verlag, 2003.
- H. Herrlich. Axiom of choice. Springer, 2006.
- A. Kechris. *Classical descriptive set theory*, volume 156. Springer-Verlag, 2012.

J. Duparc (Unil & ())

3

イロト イポト イヨト イヨト

References [2]

- D. A. Martin. Borel determinacy. *The Annals of Mathematics*, 102(2):363–371, 1975.
- F. Murlak. The Wadge hierarchy of deterministic tree languages. Logical Methods in Computer Science, 4(4), 2008.
- D. Niwiński and I. Walukiewicz. A gap property of deterministic tree languages. *Theoretical Computer Science*, 303(1):215–231, 2003.
- D. Perrin and J.-E. Pin. *Infinite words: automata, semigroups, logic and games,* volume 141. Academic Press, 2004.
- V. Selivanov. Fine hierarchy of regular ω-languages. *Theoretical Computer Science*, 191(1):37–59, 1998.
- K. W. Wagner. On omega-regular sets. *Information and Control*, 43(2):123–177, 1979.

3

イロト イポト イヨト イヨト

- Games provide a powerful framework for understanding interactions.
- They are present in various features of Computer Science: e.g. *alternating machines, reactive systems, games semantics* [1].
- Here we are only interested in a very peculiar use of games: the purpose is to

elucidate the topological complexity of languages of infinite words recognized by automata.

Definition

Given any (finite) non-empty set A,

- A^* denotes the set of all *finite* words on A
- ε denotes the empty word
- $\bullet \ A^{\omega}$ denotes the set of all infinite words on A
- \bullet the concatenation of two finite words u and v is denoted by uv
- we use

J. Duparc (Mil_ & (14))

- a, b for the letters of the alphabet,
- u, v for the finite words,
- \vec{a}, \vec{b} for the infinite words.

Introduction [3]

Definition

A Büchi automaton [10] is of the form

$$\mathscr{A} = (A, Q, q_i, \Delta, F)$$

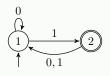
where

- ${\small 0 \hspace{0.1in}} A \text{ is a finite alphabet}$
- ${f 2}$ Q is a finite state of states
- \bullet q_i is the initial state
- $\textcircled{0} \ \Delta \subseteq Q \times A \times Q,$
- $F \subseteq Q$ stands for the set of accepting states.

Introduction [4]

Example

A Büchi automaton



• It is deterministic when

 $\Delta \text{ is a function } Q \times A \to Q.$

i.e. for all
$$(q,a)\in Q\times A$$

there exists a unique $q' \in Q$ such that $(q, a, q') \in \Delta$.

イロト イポト イヨト イヨト

Introduction [5]

• \mathscr{A} accepts an infinite word $\vec{a} = a_0 a_1 a_2 \dots$ if there exists some run $\rho_{\vec{a}} \in Q^{\omega}$ that visits infinitely often some accepting state.

 $\rho_{\vec{a}}$ must verify

- $\rho_{\vec{a}}(0) = q_i$ and for each integer n,
- $\left(\rho_{\vec{a}}(n), a_n, \rho_{\vec{a}}(n+1)\right) \in \Delta.$
- Parity automata are defined similarly except for the acceptance condition which replaces F with a mapping c : Q → N. Then, an infinite word a is accepted if there exists existe a run ρ_a s.t.

$$\limsup_{n \to \infty} c(\rho_{\vec{a}}(n)) \text{ is even [10, 4]}.$$

i.e. \vec{a} is accepted iff there exists some run s.t. the set S of the states that are visited infinitely often satisfies

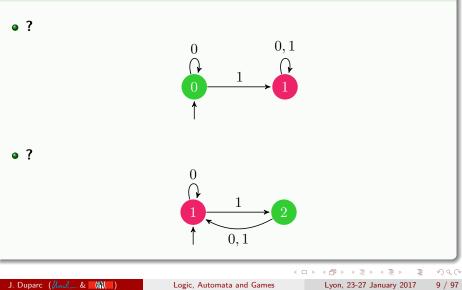
$$\max\{c(q) \mid q \in S\} \text{ is even}.$$

J. Duparc (Unil & (M.))

8 / 97

イロト 不得下 イヨト イヨト 二日

Introduction [6]



Introduction [7]

- The language recognized by an automaton is the set of words it accepts.
- Parity automata, Büchi automata and deterministic parity automata recognize the same class of languages:

 ω -regular languages.

• If $\mathscr{A} = (A,Q,q_i,\delta,c)$ is some deterministic parity automaton, then

$$\mathscr{A}^{\complement} = (A, Q, q_i, \delta, c')$$

where c^\prime is defined by $c^\prime(n)=c(n)+1$ satisfies

$$\mathscr{L}(\mathscr{A})^{\complement} = \mathscr{L}(\mathscr{A}^{\complement}).$$

We will make use of the set theoretical definition of a tree:
 a tree T on an alphabet A is a set T ⊆ A* closed under prefixes.

イロト イポト イヨト イヨト

Finite two-player games with perfect information [1]

We only take into account games s.t.:

- there are two players;
- plays are both *sequential* (no simultaneous moves, players take turns) and finite;
- information is *perfect* (at any time, the whole configuration of the play is accessible to all players, i.e nothing is hidden, no chance).
- when a play is over, there is a *winner* and a *looser*.
 - \neq Poker
 - $\bullet \ \neq \mathsf{Battleship}$
 - $\bullet \ \neq \textit{Game of the goose}$
 - $\bullet \ \neq Chess$
 - \neq Checkers

J. Duparc (Unil & (

Finite two-player games with perfect information [2]

Example (The chocolate bar)

- Two players (0 and 1) take turns munching chocolate.
- Player 0 starts.
- Each time players must eat a piece of chocolate. But when then take out a piece (i, j), they must also take out all (i', j') such that i' > iand $j' \geq j$.
- Unfortunately, the bottom piece (0,0) is lethal. The one who dies, loses the game, the other one wins.

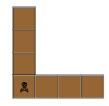
< 4 P ►

3

Finite two-player games with perfect information [3]

• If player 0 does the following:

 ${f 0}$ at first move, ${f 0}$ eats out (1,1), so that the opponent is left with



- then, each time 0 must play, if the opponent takes out piece (0, i), resp. (i, 0), player 0 picks the symmetrical piece (i, 0), resp. (0, i).
- This makes sure that player 1 munches the bottom piece (0,0) and dies.

Finite two-player games with perfect information [4]

We just showed that player 0 – the one who starts to play – has a way of playing – that only depends on its adversary's move– that guarantees its victory¹ i.e. we exhibited a

winning strategy for player 0.

- All possible moves of such a game form a well-founded labeled tree
 - Each node corresponds to some configuration the root being the initial configuration.
 - Each branch from the root to some leaf represents a possible play.

Finite two-player games with perfect information [5]

Example (Chess)

- The initial configuration is the chessboard with the initial positions of the various pieces and the fact that White must play.
- The immediate successors of the initial configuration are all the configurations that White may reach in one move. (8 pawns + 2 knights; 2 moves each).

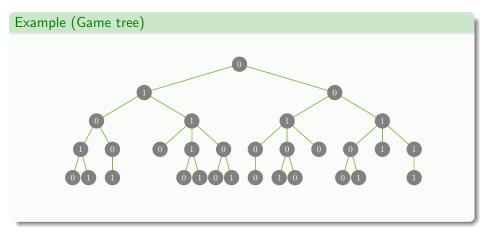
Definition (Finite Game Tree)

J. Duparc (Unil_& (

A finite game tree (T, e) is a well-founded non-empty tree T, labeled by some mapping $e: T \to \{0, 1\}$. The two-player game with perfect information associated with (T, e) consists in

- placing a token on the root of the tree, and
- for each node on which the token stands, player e(n) loses the game if n is leaf, otherwise pushes the token to any immediate successor of node of n.

Finite two-player games with perfect information [7]



Logic, Automata and Games

J. Duparc (Unil & (114))

Lyon, 23-27 January 2017

-

17 / 97

Finite two-player games with perfect information [8]

Definition

A strategy for player 0 in the game associated with a finite tree (T,e) is a non-empty labeled tree (σ,e) satisfying

•
$$\sigma \subseteq T$$

- each leaf of σ is also a leaf of T,
- for each node $n \in \sigma$ that is not a leaf:
 - if e(n) = 0, then a unique immediate successor of of n belongs to σ ;
 - if e(n) = 1, then every immediate successor of n belong to σ .

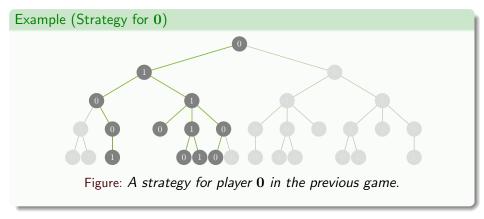
A strategy for 1 is defined *mutatis mutandis*.

Finite two-player games with perfect information [9]

- We say a player applies a strategy if the game is restricted to this strategy.
- If player 0 applies a strategy σ and player 1 applies a strategy τ , then the game restricts itself to a unique play: the tree whose only branch is

 $\sigma\cap\tau.$

Finite two-player games with perfect information [10]

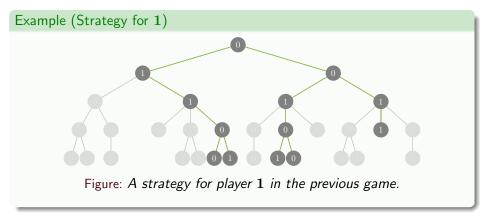


J. Duparc (Unil & (114))

ヨトィヨト

20 / 97

Finite two-player games with perfect information [11]



J. Duparc (Unil & (114))

- - E - 5

Finite two-player games with perfect information [12]

Definition

In the game associated with a finite tree (T, e),

- a strategy σ for player 0 is winning if for every leaf $f \in \sigma$, e(f) = 1;
- a strategy τ for player 1 is winning if for every leaf $f \in \sigma$, e(f) = 0;

Definition

A game is *determined* if one of the players has a winning strategy.

Finite two-player games with perfect information [13]

- For certain class of games, the fact that games are determined is a very strong statement. It transforms a negative assertion in a positive one:
 - (player \mathbf{J} has no w.s.) \Longrightarrow (player $\mathbf{1} \mathbf{J}$ has a w.s.).
- Henceforth, a determinacy principle is a highly non constructive statement.
 - it is claimed that a w.s. exists for a given player without being able to construct even one.

Finite two-player games with perfect information [14]

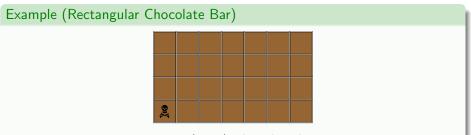


Figure: (n, m) chocolate bar.

- We know that if $n = m \neq 0$, then player **0** has a w.s.
- Assuming that this game is *determined* confirmed by Theorem **??** we show that player **0** has a w.s. whatever the size $(n, m) \neq (0, 0)$.

Finite two-player games with perfect information [15]

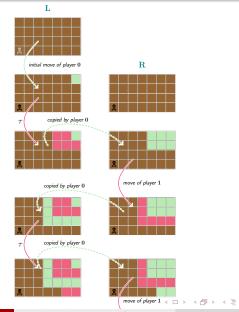
- Since this game is determined, in order to show that 0 has a w.s. it is enough to show that its opponent does not have one.
- We proceed by contradiction and assume that player 1 has a w.s. τ and we build a w.s. σ for player 0.

We consider two different plays : L and R.

- In L, player 1 applies a w.s. τ .
- In R, player 1 plays freely. Player 0 applies a strategy $\sigma.$ We define σ by:
 - L_0 : player **0** eats up (n, m);
 - L_{2i+1} is the answer by τ to L_{2i} of player **0**;
 - R_{2i} is a copy by player **0** of player **1**'s L_{2i+1}
 - R_{2i+1} is any free choice by **1**.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Finite two-player games with perfect information [16]



J. Duparc (Unil & (

Logic, Automata and Games

Lyon, 23-27 January 2017

- 4 ⊒ →

Sac

26 / 97

3

J. Duparc (Mil_& (14))

- Although they may seem abstract, these games lie at the core of what it takes to evaluate a formula:
 - to check whether or not holds true in a given model, comes down to solving a game.
- One particular example is evaluation games for 1st order logic [2].

Definition

Let ${\mathscr L}$ be a 1st order language,

- ullet \mathscr{M} an $\mathscr{L} ext{-structure}$ and
- ϕ a closed \mathscr{L} -formula whose connectors are among $\{\neg, \lor, \land\}$.

We define the $evaluation \; game \; \mathbb{EV} \left(\phi, \mathscr{M} \right)$ as a finite two-player game with perfect information.

- Players are called
 - Verifier
 - Falsifier.
- Moves are defined by:

J. Duparc (Unil & (

Definition

if ϕ is	who's turn	goes on with
atomic	no one	play stops
$\exists x \psi$	V picks a in the domain of ${\mathscr M}$	$\psi_{[a/x]}$
$\forall x \psi$	F picks a in the domain of \mathscr{M}	$\psi_{[a/x]}$
$\phi_0 \lor \phi_1)$	V choses $i \in \{0, 1\}$	ϕ_i
$(\phi_0 \wedge \phi_1)$	F choses $i \in \{0, 1\}$	ϕ_i
$\neg \psi$	V and F switch roles	ψ

By construction, one stops on an atomic formula of the form $R(t_1, \ldots, t_n)_{[a_1/x_1, \ldots, a_k/x_k]}$ where x_1, \ldots, x_k are all variables from $R(t_1, \ldots, t_n)$ and a_1, \ldots, a_k are elements from $|\mathcal{M}|$.

J. Duparc (Unil & (Mil))

Evaluation Game [4]

Definition

Verifier wins iff

$$\left(t_{1[a_1/x_1,\ldots,a_k/x_k]},\ldots,t_{n[a_1/x_1,\ldots,a_k/x_k]}\right)\in R^{\mathscr{M}}.$$

• The rules are defined in order to obtain:

Theorem

If \mathscr{L} is a 1st order language, \mathscr{M} any model, ϕ any \mathscr{L} -formula whose connectors are among $\{\neg, \lor, \land\}$. Then

Verifier has a w.s. in $\mathbb{EV}(\phi, \mathscr{M}) \iff \phi$ *holds true in* \mathscr{M} *.*

J. Duparc (Unil & (

Sac

イロト 不得下 イヨト イヨト 二日

Infinite two-player games with perfect information [1]

- Going from finite to infinite games is a giant leap.
- Everything becomes less easy and more technical since topological notions are required.
- Among all the infinite two-player games with perfect information, one stands out: the Gale-Stewart game.

Infinite two-player games with perfect information [2]

Definition

Given $L \subseteq A^{\omega}$, the Gale-Stewart game $\mathscr{G}(L)$ is an infinite game in which the players (*I* and *II*) alternately chose $a \in A$. Player *I* starts. Player *I* wins iff the infinite word \vec{a} constructed during the play satisfies $\vec{a} \in L$. Otherwise, player *II* wins.

Firstly consider for each non-null integer n, a finite version $\mathscr{G}_n(M)$ for $M \subseteq A^{2n}$. Clearly, these games are determined. Not only because these

J. Duparc (Unil & (Mil))

Lyon, 23-27 January 2017

32 / 97

イロト イポト イヨト イヨト

Infinite two-player games with perfect information [3]

are finite two-player games with perfect information, but also because the formula that expresses that I does not have a w.s.:

 $\neg \exists a_0 \forall a_1 \exists a_2 \forall a_3 \dots \forall a_{2n-1} \ \vec{a} \in M$

is *logically* equivalent to the formula

$$\forall a_0 \exists a_1 \forall a_2 \exists a_3 \dots \exists a_{2n-1} \ \vec{a} \notin M$$

which says that *II* has a w.s..

Gale-Stewart determinacy can be regarded as a generalisation of this phenomenon to the *"infinite formula"* describing the existence of a w.s. for player *I*. Indeed determinacy claims that if *I* does not have a w.s., i.e.

$$\neg \exists a_0 \forall a_1 \exists a_2 \forall a_3 \dots \vec{a} \in L,$$

then player *II* has one:

$$\forall a_0 \exists a_1 \forall a_2 \exists a_3 \dots \vec{a} \notin L.$$

J. Duparc (Unil & (M.))

Infinite two-player games with perfect information [4]

- However, contrary to what happens in the finite case, determinacy is not a simple statement in the infinite one.
 - One can show there exist non-determined games (this requires the *Axiom of Choice*.)
 - On can show these games are determined for a large class of sets (the *Borel* sets).

Definition (Banach-Mazur Game)

Given $L \subseteq A^{\omega}$, the Banach-Mazur game $\mathscr{B}(L)$ is identical to the Gale-Stewart game $\mathscr{G}(L)$ except that players play *non-empty* words $(\in A^*)$ instead of letters $(\in A)$. Player I wins if the concatenation \vec{a} of the words played satisfies $\vec{a} \in L$. Otherwise II wins.

J. Duparc (Unil & (M.)	Logic, Automata and Games	Lyon, 23-27 January 2017	35 / 97
------------------------	---------------------------	--------------------------	---------

イロト イポト イヨト イヨト

A non-determined game [2]

- Given any set A and $L \subseteq A^{\omega}$, one can easily define A' and $L' \subseteq A'^{\omega}$ such that the game $\mathscr{G}(L')$ simulate the game $\mathscr{B}(L)$ so that the existence of a w.s. for a player in the first game induces the existence of a w.s. for the same player in the second game.
- Therefore, to show that there exists L' s.t. $\mathscr{G}(L')$ is not determined, it is enough to come up with a set L such that $\mathscr{B}(L)$ is not determined.

Definition

 $F \subseteq \{0,1\}^{\omega}$ is a *flip set* if for all $\vec{x}, \vec{y} \in \{0,1\}^{\omega}$, si $\exists k \ (x_k \neq y_k \land \forall n \neq k \ (x_n = y_n))$, i.e. \vec{x} and \vec{y} only differ by a *single* digit , then $x \in F \iff y \notin F$.

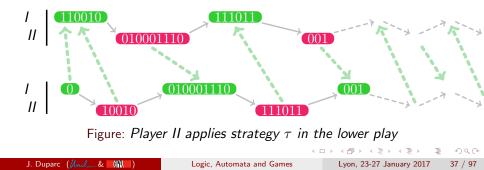
36 / 97

A non-determined game [3]

Proposition (AC)

If $F \subseteq \{0,1\}^{\omega}$ is a flip set, then the game $\mathscr{B}(F)$ is not determined.

Towards a contradiction, we assume that player II has a w.s. τ which he applies in the lower play, and we show that player I also has a w.s. in the upper play.



A non-determined game [4]

Similarly one shows that if Player I has a w.s., then II also has one.

DQC

Borel Sets [1]

J. Duparc (Mil_ & (14))

- there exists a vast class of sets for which all Gale-Stewart games are determined. Its definition is topological: the class of *Borel sets*
 - We equip the set A^{ω} with the usual topology (the product topology of the discrete topology on A):
 - Basic open sets are of the form $N_u = uA^{\omega}$ for $u \in A^+$.
 - Open sets are then of the form $\bigcup_{u \in U} N_u$ for any set $U \subseteq A^*$

•
$$(U = \emptyset$$
 and $U = A$ respectively yield \emptyset and A^{ω} .)

• \mathbb{N}^{ω} is similar to \mathbb{R} (equipped with the usual topology: basic open sets are of the form]x, y[) since it is homeomorphic – i.e. isomorphic with regard to the topological structure – to $\mathbb{R} \setminus \mathbb{Q}$.

$$\mathbb{N}^\omega \cong \mathbb{R}\smallsetminus \mathbb{Q}$$

Borel Sets [2]

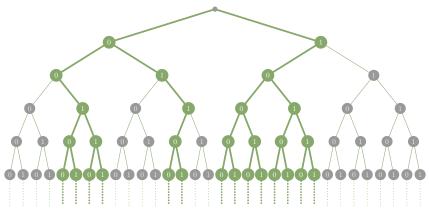


Figure: An open subset of $\{0,1\}^{\omega}$.

J. Duparc (Unil & (

Logic, Automata and Games

Lyon, 23-27 January 2017

▲ 臣 トー ▲ 臣 ト

Definition

The class of Borel subsets of A^ω is the least that

- contains the open sets, and
- is closed under
 - countable union and
 - ② complementation.

Borel Sets [4]

Example

Borel subsets of $\{0,1\}^{\omega}$: • $\{0^{\omega}\}$: it is a closed set (the complement of an open set) since $\{0^{\omega}\}^{\complement} = \bigcup N_u$ $u \in \{0,1\}*1$ **2** $\{0,1\}^*1^\omega$: since it is $u1^{\omega}$ $u \in \{0,1\}^*$ (a countable union of closed sets).

 $\bullet\,$ Given any tree $T\subseteq A^*,\,[T]$ denotes the set of its infinite branches

$$T] = \{ \vec{a} \in A^{\omega} \mid \forall n \in \mathbb{N} \ \vec{a} \upharpoonright n \in T \}.$$

J. Duparc (Unil & ())

Borel Sets [5]

• Notice that
$$[T]^{\complement} = \bigcup_{\substack{v \notin T \\ open}} vA^{\omega}.$$

• For any $B \subseteq A^{\omega}$

J. Duparc (Unil & (114))

B is closed $\iff B = [T]$

for some tree $T \subseteq A^*$ [6].

• As soon as they were introduced, the Borel sets were set up in a nice hierarchy by Baire.

3

Borel Sets [6]

J. Duparc (Unil & (M.))

Lyon, 23-27 January 2017 44 / 97

Ξ

990

◆ロト ◆聞ト ◆臣ト ◆臣ト

Borel Sets [7]

Definition (Borel Hierarchy)

By induction on ordinals, we define

•
$$\Sigma_1^0 = \{\textit{open}\}$$

•
$$\Pi^0_{\alpha} = \{ E^{\complement} \mid E \in \Sigma^0_{\alpha} \}$$

•
$$\Sigma^0_{\alpha} = \left\{ \bigcup_{n \in \mathbb{N}} E_n \mid E_n \in \bigcup_{\beta < \alpha} \Pi^0_{\beta} \right\}$$

•
$$\boldsymbol{\Delta}^0_{\alpha} = \boldsymbol{\Sigma}^0_{\alpha} \cap \boldsymbol{\Pi}^0_{\alpha}.$$

$$\mathscr{B} = igcup_{lpha \in On} \mathbf{\Sigma}^0_{lpha} = igcup_{lpha \in On} \mathbf{\Pi}^0_{lpha} = igcup_{lpha < \omega_1} \mathbf{\Sigma}^0_{lpha} = igcup_{lpha < \omega_1} \mathbf{\Pi}^0_{lpha}$$

J. Duparc (Unil & (M.))

Logic, Automata and Games

Lyon, 23-27 January 2017

イヨト・イヨト

3

Borel Sets [8]

Example

Ainsi, parmi les sous-ensembles de l'espace $\{0,1\}^{\omega}$,

- $\{0^{\omega}\} \in \mathbf{\Pi}_1^0$
- $\{0,1\}^* 1^\omega \in \Sigma_2^0$
- $(\{0,1\}^*0)^\omega \in \mathbf{\Pi}_2^0$

Indeed,

$$\{0,1\}^{\omega} = [\{0,1\}^*]$$
$$\{0,1\}^* 1^{\omega^{\complement}} = (\{0,1\}^* 0)^{\omega}$$

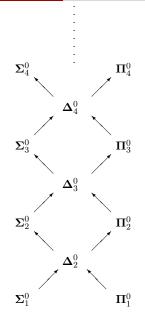
and

$$(\{0,1\}^*0)^{\omega} = \bigcap_{n \in \mathbb{N}} \underbrace{(\{0,1\}^*0)^n \{0,1\}^{\omega}}_{\Sigma_1^0}_{\underline{\Sigma_1^0}}_{\underline{\Pi_2^0}}$$

J. Duparc (Unil & (M.))

Logic, Automata and Games

▲ @ ▶ ▲ E ▶ ▲ E ▶
Lyon, 23-27 January 2017



J. Duparc (Unil & (M))

Logic, Automata and Games

◆□▶ ◆□▶ ◆□▶ ◆□▶ Lyon, 23-27 January 2017

Ξ 46 / 97

900

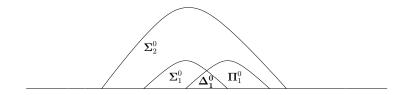
		() () () () () () () () () ()	$\mathcal{O} \land \mathcal{O}$
J. Duparc (Unil & (111)	Logic, Automata and Games	Lyon, 23-27 January 2017	46 / 97

J. Duparc (Unil & (Logic, Automata and Games	

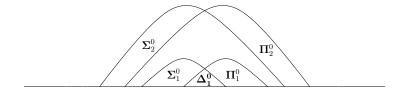
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 の Q (~) Lyon, 23-27 January 2017 46 / 97

J. Duparc (Unil & (M.)	Logic, Automata and Games
------------------------	---------------------------

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 の Q (~) Lyon, 23-27 January 2017 46 / 97

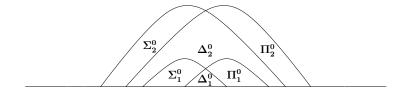


J. Duparc (Unil & (Mil))	Logic, Automata and Games
--------------------------	---------------------------

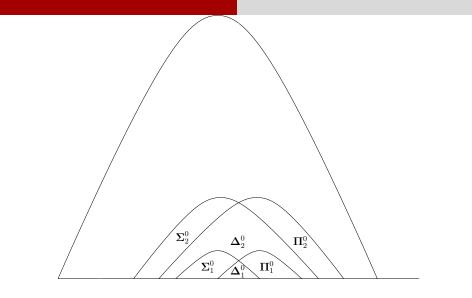


▲□▶ ▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ ▲ 三 少 Q ○

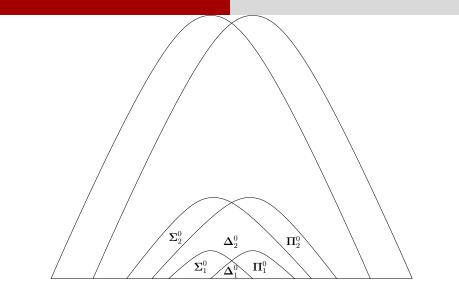
 Lyon, 23-27 January 2017
 46 / 97



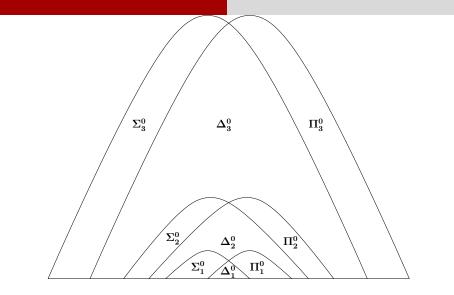
	4	ロト 《西 》 《 문 》 《 문 》 문	$\mathcal{O} \land \mathcal{O}$
. Duparc (Unil_& (M))	Logic, Automata and Games	Lyon, 23-27 January 2017	46 / 97



J. Duparc (Unil & (M))



J. Duparc (Unil & (M.))



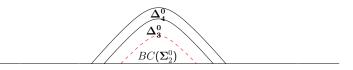
Logic, Automata and Games

J. Duparc (Unil & (M))

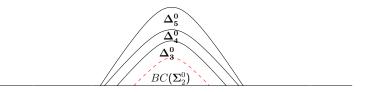
 Δ_3^0 $BC(\Sigma_2^0)$

J. Duparc (Unil & (M.)	Logic, Automata and Games
------------------------	---------------------------

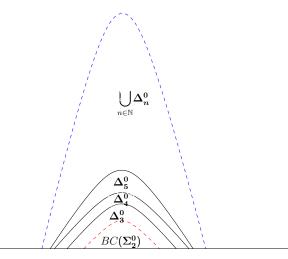
▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ▲ ■▶ ▲ ■ シ へ (~)
Lyon, 23-27 January 2017 46 / 97



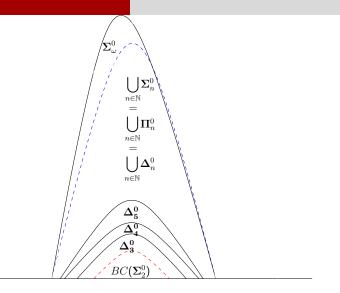
J. Duparc (Unil & (M))	Logic, Automata and Games
------------------------	---------------------------



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三里 - のへで



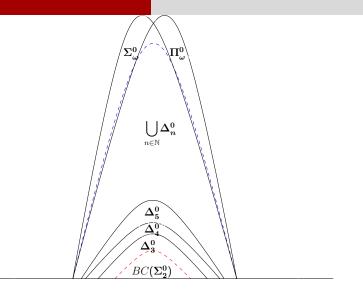
J. Duparc (Unil & (M.)	Logic, Automata and Games
------------------------	---------------------------



J. Duparc (Mil & (M) Logic, Automata and Games L	J. Duparc (Unil & 🔐 (Logic, Automata and Games	Lyc
--	-----------------------	---------------------------	-----

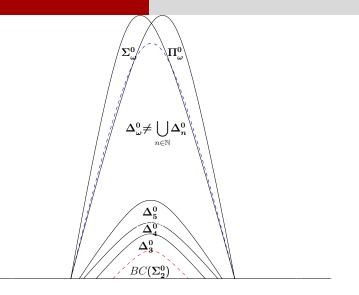
▲ □ ▶ ▲ ● ▶ ▲ ● ▶ ▲ ● ▶ ▲ ● ▶ ▲ ● ♥ ○ ○ ○

 Lyon, 23-27 January 2017
 46 / 97



J. Duparc (Unil & (M)) Logic, Automata and Games

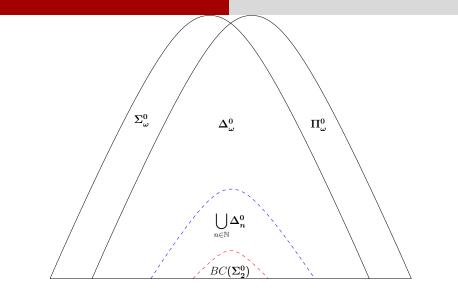
Lyon, 23-27 January 2017



▲ロト ▲御 ト ▲臣 ト ▲臣 ト ● ○ ● ● ● ●

46 / 97

J. Duparc (Huil & (Hill) Logic, Automata and Games Lyon, 23-27 January 2017



▲ロト ▲御 ト ▲臣 ト ▲臣 ト ● ○ ● ● ● ●

		< □ →	· · · · · · · · · · · · · · · · · · ·	E 900
J. Duparc (Unil & (111))	Logic, Automata and Games		Lyon, 23-27 January 2017	46 / 97

 Σ^0_ω Π^0_ω

くちゃく 御 マイボット 御 マクタン

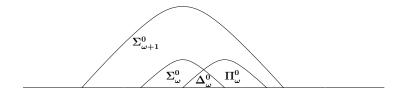
J. Duparc (Unil & (171))	Logic, Automata and Games	Lyon, 23-27 January 2017
--------------------------	---------------------------	--------------------------

 Σ^0_ω Π^0_ω ΔÒ

J. Duparc (Unil & (M.))

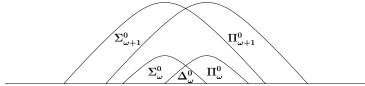
Logic, Automata and Games

Lyon, 23-27 January 2017



J. Duparc (Unil & (M.)

・ロト < 母 ト < 主 ト < 主 ト う へ で
</p>

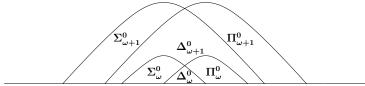


/	$\Sigma^0_\omega \Delta^0_\omega$ l	Π^0_{ω}	

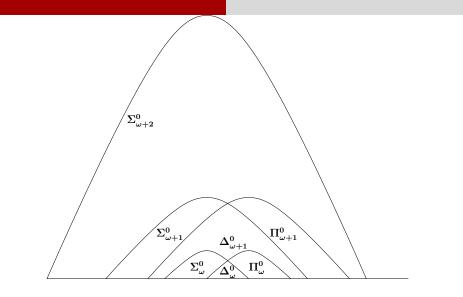
J. Duparc (Unil & (M.)

Logic, Automata and Games

Lyon, 23-27 January 2017



J. Duparc (Unil & (114))

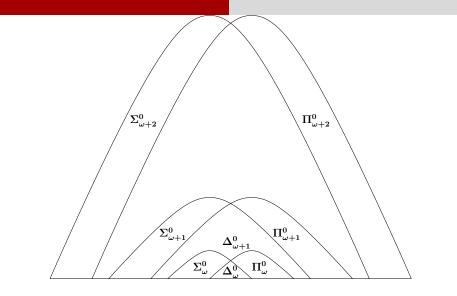


Logic, Automata and Games

J. Duparc (Unil & (M))

Lyon, 23-27 January 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三里 - のへで

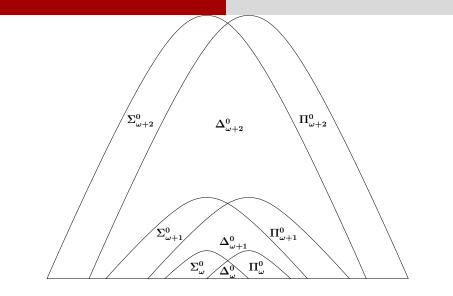


Logic, Automata and Games

J. Duparc (Unil & (M))

Lyon, 23-27 January 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三里 - のへで



Logic, Automata and Games

J. Duparc (Unil & (M))

Lyon, 23-27 January 2017

・ロト < 母 ト < 主 ト < 主 ト う へ で
</p>

Borel Sets bis [1]

Example

Let $\mathscr{A}=(A,Q,q_i,\delta,F)$ be a deterministic Büchi automaton and \vec{a} an infinite word,

$$\begin{array}{ll} \vec{a} \in \mathscr{L}(\mathscr{A}) & \Longleftrightarrow & \text{there exists infinitely many } n \text{ s.t. } \rho_{\vec{a}}(n) \in F \\ & \Leftrightarrow & \forall m \; \exists n > m \; \rho_{\vec{a}}(n) \in F \\ & \Leftrightarrow & \forall m \; \exists n > m \; \rho_{\vec{a}} \in \mathscr{N}_n \end{array}$$

where

$$\mathcal{N}_n = \underbrace{\{\rho \in \{Q\}^\omega \mid \rho(n) \in F\}}_{onen}$$

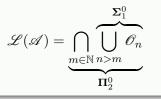
One notices that $f : \vec{a} \longrightarrow \rho_{\vec{a}}$ is continuous.

Borel Sets bis [2]

Example

$$\mathcal{O}_n = \{ \vec{a} \in \{A\}^{\omega} \mid \rho_{\vec{a}} \in \mathcal{N}_n \} = \underbrace{f^{-1}\mathcal{N}_n}_{open}$$

Hence



		< □ →	★週 ▶ ★ 国 ▶ ★ 国 ▶	₹.	$\mathcal{O} \land \mathcal{O}$
J. Duparc (Inil & A	Logic, Automata and Games		Lyon, 23-27 January 2017		48 / 97

Borel Sets bis [3]

This is a characterization from below. Another one, from above relies on Suslin's theorem [6].

Borel Sets bis [4]

Definition (Analytic Set)

 $\mathscr{A} \subseteq A^{\omega}$ is *analytic* if there exists some tree $T \subseteq (\mathbb{N} \times A)^*$ s.t.

$$\vec{a} \in \mathscr{A} \iff \exists \vec{x} \in \mathbb{N}^{\omega} \ \vec{x} \times \vec{a} \in [T].$$

where $\vec{x} \times \vec{a}$ stands for $(x_0, a_0)(x_1, a_1)(x_2, a_2) \dots$

Same holds if one replaces [T] by any Borel set.

Theorem (Suslin)

For all A countable and $B \subseteq A^{\omega}$,

$$B \text{ Borel} \iff B \text{ and } B^{\complement} \text{ are both analytic.}$$

50 / 97

イロト 不得下 イヨト イヨト 二日

Borel Sets bis [5]

J. Duparc (Unil & (114))

Example

Let $\mathscr{A}=(A,Q,q_i,\Delta,F)$ be any Büchi non-deterministic automaton, and \vec{a} any infinite word,

Logic, Automata and Games

Lyon, 23-27 January 2017

Example

- As the projection of a Borel set, this language is analytic.
- Since ω -regular languages are closed under complementation,

 $\mathscr{L}(\mathscr{A})$ is Borel

Theorem (Borel Determinacy, Martin)

Given any A and $B \subseteq A^{\omega}$ Borel,

the Gale-Stewart game $\mathscr{G}(B)$ is determined.

J. Duparc (Mil_& (14))

3

Continuous Reductions [1]

Reduction

Definition

• $X \leq Y \iff \exists f \text{ simple } (x \in X \Leftrightarrow f(x) \in Y)$

• simple w.r. to topological complexity means continuous

J. Duparc (Unil & (M.)

Logic, Automata and Games

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥
 Lyon, 23-27 January 2017

Definition

A function $f : A^{\omega} \to B^{\omega}$ is **continuous** if for each open set $\mathscr{O} \subseteq B^{\omega}$, $f^{-1}\mathscr{O}$ is an open subset of A^{ω} .

- It corresponds to "not lifting up the pen!" on the real line.
- Here there is an elegant definition in terms of games.

Proposition

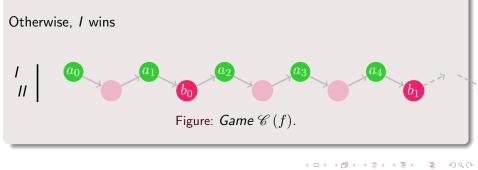
Soit $f : A^{\omega} \to B^{\omega}$,

f is continuous \iff player II has a w.s. in $\mathscr{C}(f)$.

Definition

Given $f : A^{\omega} \to B^{\omega}$, the game that characterizes continuous functions $\mathscr{C}(f)$ is an infinite game in which players (I and II) alternately chose $a \in A$ and $b \in B$. Player I starts. Player II can skip. Player II wins iff

$$f(\vec{a}) = \vec{b}.$$



J. Duparc (Unil & (M.))

Logic, Automata and Games

Lyon, 23-27 January 2017 55 / 97

Continuous Reductions [4]

Definition

•
$$X \leq Y \iff \exists f \text{ simple } (x \in X \Leftrightarrow f(x) \in Y)$$

• $Y \text{ is } C\text{-complete } \iff \begin{cases} Y \in C \\ X \leq Y \\ \text{ , any } X \in C \end{cases}$

• X is less complicated than Y

Reduction Games

Continuous Reductions [5]

Wadge Ordering



3

Continuous Reductions [6]

$$\mathscr{W}\left(X,Y\right) \ \mathbf{H}$$

J. Duparc (Inil & III) Logic, Automata and Games

Lyon, 23-27 January 2017 58 / 97

イロト イポト イヨト イヨト

590

Ξ

Continuous Reductions [7]

 $\mathbf{I} \quad \mathscr{W}(X,Y) \quad \mathbf{II}$

 x_0

◆ロト ◆聞ト ◆臣ト ◆臣ト

Continuous Reductions [8]

 $\mathbf{I} \quad \mathscr{W}(X,Y) \quad \mathbf{II}$ x_0 \mathbf{i}

J. Duparc (Unil & (M.) Log

∃ 990

◆ロト ◆聞ト ◆臣ト ◆臣ト

Continuous Reductions [9]

 $\mathbf{I} \quad \mathscr{W}(X,Y) \quad \mathbf{II}$ x_0 \mathbf{i} s

J. Duparc (Unil & (1910)

Lyon, 23-27 January 2017 61 / 97

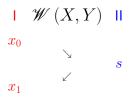
◆ロト ◆聞ト ◆臣ト ◆臣ト

Continuous Reductions [10]

 $\mathbf{I} \quad \mathscr{W}(X,Y) \quad \mathbf{II}$ x_0 \mathbf{i} s \checkmark

∃ 990

Continuous Reductions [11]

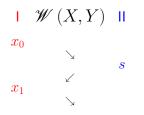


Lyon, 23-27 January 2017 63 / 97

590

1

Continuous Reductions [12]



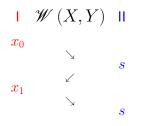
J. Duparc (Unil & (!!!)

Lyon, 23-27 January 2017 64 / 97

990

1

Continuous Reductions [13]

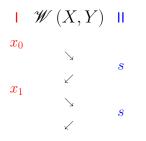


Lyon, 23-27 January 2017 65 / 97

990

1

Continuous Reductions [14]



J. Duparc (Unil & (M))

Logic, Automata and Games

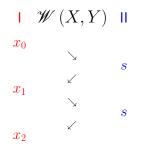
Lyon, 23-27 January 2017

990

66 / 97

1

Continuous Reductions [15]



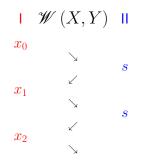
J. Duparc (Unil & (M))

Lyon, 23-27 January 2017 67 / 97

990

1

Continuous Reductions [16]

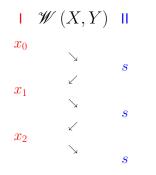


Lyon, 23-27 January 2017 68 / 97

590

3

Continuous Reductions [17]



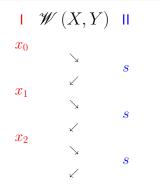
J. Duparc (Unil & (M.)

Lyon, 23-27 January 2017 69 / 97

590

3

Continuous Reductions [18]



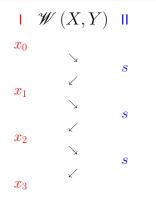
J. Duparc (Unil & (M.)

Lyon, 23-27 January 2017 70 / 97

E

990

Continuous Reductions [19]



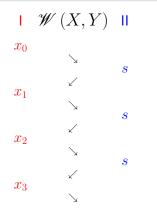
J. Duparc (Unil & (M.))

Lyon, 23-27 January 2017 71 / 97

E

590

Continuous Reductions [20]



J. Duparc (Unil & (M.)

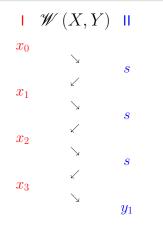
Lyon, 23-27 January 2017

E

990

72 / 97

Continuous Reductions [21]

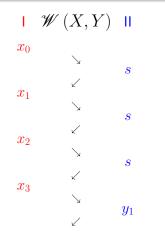


E

990

73 / 97

Continuous Reductions [22]



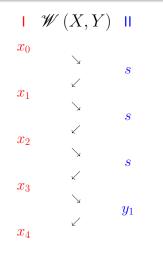
Lyon, 23-27 January 2017

E

990

74 / 97

Continuous Reductions [23]



J. Duparc (Unil & (

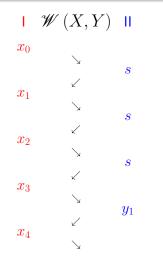
Lyon, 23-27 January 2017

E

590

75 / 97

Continuous Reductions [24]



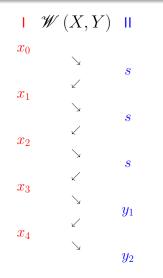
J. Duparc (Unil & (

Lyon, 23-27 January 2017

イロト イポト イヨト イヨト

E

Continuous Reductions [25]



J. Duparc (Unil & (M.))

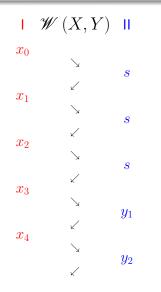
Lyon, 23-27 January 2017

イロト イポト イヨト イヨト

- クへ(や 77 / 97

E

Continuous Reductions [26]

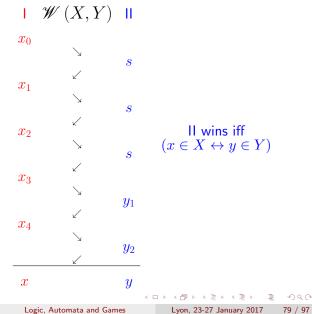


J. Duparc (Unil & (M.))

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

E

Continuous Reductions [27]

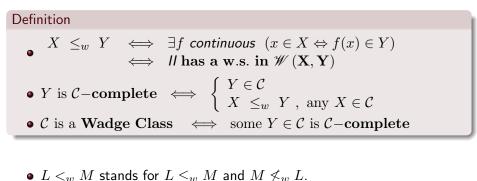


J. Duparc (Unil & (

Logic, Automata and Games

Continuous Reductions [28]

Wadge Ordering



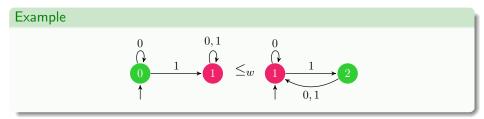
- $L \equiv_w M$ stands for $L \leq_w M$ and $M \leq_w L$.
- $X \leq_w Y \iff X^{\complement} \leq_w Y^{\complement}$

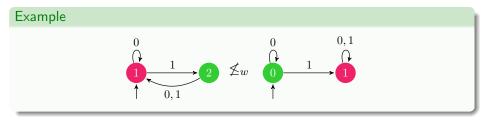
J. Duparc (Mil_& (Pf.))

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つくや Lyon, 23-27 January 2017

Continuous Reductions [29]

J. Duparc





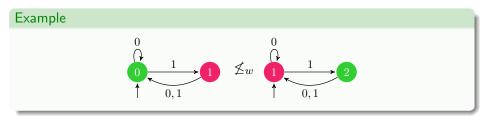
					_		
(Unil_& (1))	Logic, Automata and Games	Lyon, 23	3-27 Jani	uary 2017		81 /	97

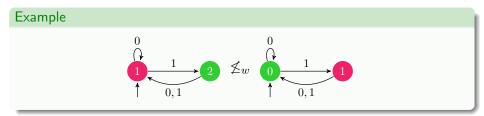
イロト 不得 トイヨト イヨト

3

Continuous Reductions [30]

J. Duparc





(Unil_&_(!!!)	Logic, Automata and Games	Lyon, 23-27 January 2017	82 / 97

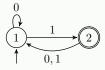
イロト イロト イヨト イヨト 二日

990

Continuous Reductions [31]

Example

The following Büchi automaton \mathscr{B} is Π_2^0 -complete.



• Since $\mathscr{L}(\mathscr{B})$ is deterministic Büchi, $\mathscr{L}(\mathscr{B}) \in \Pi_2^0$ • Let $B = \bigcap_{n \in \mathbb{N}} \mathscr{O}_n$ be any Π_2^0 -subset of A^{ω} . We show

$$B = \bigcap_{n \in \mathbb{N}} \mathcal{O}_n \leq_w \underbrace{\bigcap_{1 \to \infty}^{0} 1}_{0, 1} \underbrace{2}_{0, 1}$$

J. Duparc (Unil & (114))

< 17 ▶

3

The relation \leq_w is a partial ordering:

- reflexive
- transitive

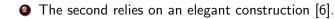
With determinacy:

- anti-chaines have length at most two;
- ② it is well-founded, i.e. there is no infinite descending chain

$$A_0 >_w A_1 >_w A_2 >_w \ldots >_w A_n >_w A_{n+1} >_w \ldots$$

• The first result is an immediate consequence of the following lemma

Lemma (Wadge) Given $L \subseteq A^{\omega}$ and $M \subseteq B^{\omega}$, if $\mathscr{W}(L, M)$ is determined, then $L \not\leq_w M \Longrightarrow M \leq_w L^{\complement}.$



85 / 97

Continuous Reductions [34]

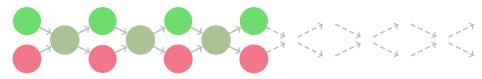


Figure: The Wadge Hierarchy.

Proposition

If \mathscr{A} is some deterministic parity automaton, then

$$\mathscr{L}(\mathscr{A}) \in \mathbf{\Delta}_3^0 = \mathbf{\Sigma}_3^0 \cap \mathbf{\Pi}_3^0.$$

J. Duparc (Unil & (M.))

Logic, Automata and Games

Lyon, 23-27 January 2017

-

Continuous Reductions [35]

$$\begin{array}{ccc} \vec{a} \in \mathscr{L}(\mathscr{A}) \\ \Leftrightarrow & \exists i \leq p \ \left(\exists^{\infty} n \ \mathcal{C} \left(\rho_{\vec{a}}(n) \right) = 2i \ \land \ \exists m \ \forall n \geq m \ \mathcal{C} \left(\rho_{\vec{a}}(n) \right) \leq 2i \right) \\ \Leftrightarrow & \exists i \leq p \ \left(\underbrace{\forall m \ \exists n > m \ \mathcal{C} \left(\rho_{\vec{a}}(n) \right) = 2i}_{\Pi_{2}^{0}} \ \land \ \underbrace{\exists m \ \forall n \geq m \ \mathcal{C} \left(\rho_{\vec{a}}(n) \right) \leq 2i \right)}_{\Sigma_{3}^{0}} \\ & \underbrace{\Sigma_{3}^{0}} \end{array}$$

Since
$$\mathscr{L}(\mathscr{A})^\complement = \mathscr{L}(\mathscr{A}^\complement)$$
, we get $\mathscr{L}(\mathscr{A}) \in \mathbf{\Pi}_3^0$.

J. Duparc (Unil & (III) Logic, Automata and Games

イロト イポト イヨト イヨト

Ξ

Continuous Reductions [36]

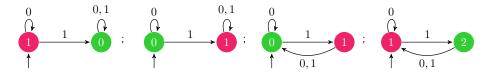


Figure: ω -regular languages complete resp. for Σ_1^0 , Π_1^0 , Σ_2^0 , Π_2^0 .

- As shown by Wagner [12] and Selivanov [11], the Wadge ordering yields a much finer analysis.
- For this purpose, we consider (The following *well-ordering*) the set of all *finite decreasing (at large) sequences of integers* equipped with the *lexicographic ordering* ≤_{lex} e.g.

88888764443322222222222221000

J. Duparc (Unil & (114))

Logic, Automata and Games

88 / 97

Continuous Reductions [37]

• This well-ordering is isomorphic to the ordinal ω^{ω} . The isomorphism maps

 $n_k \geq n_{k-1} \geq \ldots \geq n_0$ to $\omega^{n_k} + \omega^{n_{k-1}} + \ldots + \omega^{n_0}$.

• To each such finite sequence u we associate a deterministic parity automaton \mathscr{A}_u s.t

$$u <_{lex} v \iff \mathscr{A}_u <_w \mathscr{A}_v.$$

• We first define for each integer $n \mathscr{A}_n$

Continuous Reductions [38]

Figure: Automaton \mathscr{A}_0 .

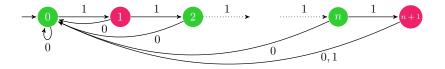


Figure: Automaton \mathscr{A}_{n+1} (the coloring corresponds to n even).

J. Duparc (Unil & (Mil))

Logic, Automata and Games

Lyon, 23-27 January 2017

- 4 E - 5

90 / 97

Continuous Reductions [39]

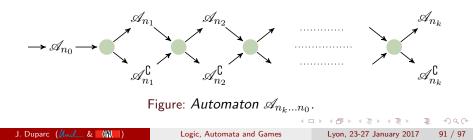
• To each sequence $u = n_k n_{k-1} \dots n_0$ satisfying $n_k \ge n_{k-1} \ge \dots \ge n_0$, we associate three automata

2
$$-\mathscr{A}_u$$
,

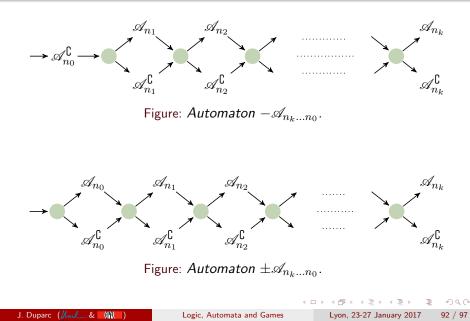
 $\mathbf{3} \pm \mathscr{A}_u$

whose graph are represented by the following figures.

• the labelling does not matter as long as it makes them deterministic.



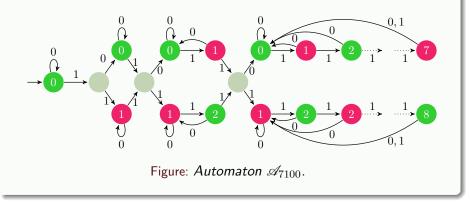
Continuous Reductions [40]



Continuous Reductions [41]

Example

A deterministic labelling for \mathscr{A}_{7100} .



J. Duparc (Unil & APA)
-------------	------------	---

-

-

Continuous Reductions [42]

Proposition

J. Duparc (Unil & (114))

Given u, v two finite decreasing sequences of integers.

2
$$\mathscr{A}_u <_w \pm \mathscr{A}_u$$
 and $-\mathscr{A}_u <_w \pm \mathscr{A}_u$

 $If u <_{lex} v, then \pm \mathscr{A}_u <_w \mathscr{A}_v and \pm \mathscr{A}_u <_w - \mathscr{A}_v.$

イロト 不得下 イヨト イヨト 二日

Theorem

If \mathscr{A} is any deterministic parity automaton, then there exists some non-empty finite decreasing sequence of integers u s.t. (only) one of the following three possibilitis occurs:

J. Duparc (Mil_ & (14))

Logic, Automata and Games

Counter Automata and Tree Automata [1]

• If one considers *PushDown automata*, or even *1-counter automata* (with Büchi acceptance conditions)

The Wadge hierarchy of languages recognized by non-deterministic such machines is **inextricable**[3].

• *Olivier Finkel* showed that it is as complicated as the same problem for *Turing machines*

Counter Automata and Tree Automata [2]

• If one considers infinite-tree-automata,

J. Duparc (Mil_& (14))

- In case of deterministic parity automata, Damian Niwiński and Igor Walukiewicz [9] showed that the languages recognized are either complete for the class of co-analytic sets, or they sit inside the class Π⁰₃.
- Later *Filip Murlak* gave a complete description of its Wadge hierarchy [8].
- In case of *non-deterministic parity automata*, the Wadge hierarchy of ω-regular tree languages still highly remains a mystery.