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o
Introduction [1]

@ Games provide a powerful framework for understanding interactions.

@ They are present in various features of Computer Science: e.g.
alternating machines, reactive systems, games semantics [1].

@ Here we are only interested in a very peculiar use of games: the
purpose is to

elucidate the topological complexity of languages of infinite words
recognized by automata.
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o
Introduction [2]

Definition
Given any (finite) non-empty set A,
@ A* denotes the set of all finite words on A
@ ¢ denotes the empty word
@ A denotes the set of all infinite words on A
@ the concatenation of two finite words u and v is denoted by uwv

@ Wwe use

@ a,b for the letters of the alphabet,
° u,v for the finite words,
e d,b for the infinite words.
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o
Introduction [3]

Definition
A Biichi automaton [10] is of the form

o = (A,Q,q, A F)

where
@ A is a finite alphabet
@ (@ is a finite state of states
© ¢; is the initial state
Q ACRXxAXQ,
@ I C (@ stands for the set of accepting states.
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o
Introduction [4]

Example

A Biichi automaton

P

@ |t is deterministic when
A is a function Q x A — Q.
i.e. forall (g,a) e @ x A
there exists a unique ¢’ € @ such that (¢,a,¢') € A.
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o
Introduction [5]

@ o/ accepts an infinite word @ = agajas ... if there exists some run
pgz € @ that visits infinitely often some accepting state.

pg must verify

e pz(0) = ¢; and for each integer n,
o (pa(n), an pa(n + 1)) € A

@ Parity automata are defined similarly except for the acceptance
condition which replaces F' with a mapping ¢ : @ — N.
Then, an infinite word @ is accepted if there exists existe a run pgz s.t.

lim sup ¢(pz(n)) is even [10, 4].
n—o0

i.e. @ is accepted iff there exists some run s.t. the set S of the states
that are visited infinitely often satisfies

max{c(q) | ¢ € S} is even.
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Introduction [6]
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o
Introduction [7]

@ The language recognized by an automaton is the set of words it
accepts.

o Parity automata, Biichi automata and deterministic parity automata
recognize the same class of languages:

w-regular languages.
o If & =(A,Q,q,0J,c) is some deterministic parity automaton, then

MU = (A7Q7qi757 C/)

where ¢ is defined by ¢/(n) = ¢(n) + 1 satisfies

()t = 2.

@ We will make use of the set theoretical definition of a tree:
a tree T on an alphabet A is a set T' C A* closed under prefixes.
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|
Finite two-player games with perfect information [1]

We only take into account games s.t.:

@ there are two players;

@ plays are both sequential (no simultaneous moves, players take turns)
and finite;

@ information is perfect (at any time, the whole configuration of the
play is accessible to all players, i.e nothing is hidden, no chance).

@ when a play is over, there is a winner and a looser.

#Poker

#Battleship

#Game of the goose
#Chess

#Checkers
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|
Finite two-player games with perfect information [2]

Example (The chocolate bar)
@ Two players (0 and 1) take turns munching chocolate.
@ Player O starts.

@ Each time players must eat a piece of chocolate. But when then take
out a piece (4, j),they must also take out all (¢, ;') such that ¢’ > i
and j' > j.

e Unfortunately, the bottom piece (0,0) is lethal. The one who dies,
loses the game, the other one wins.

v
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|
Finite two-player games with perfect information [3]

o If player O does the following:

© at first move, 0 eats out (1, 1), so that the opponent is left with

@ then, each time 0 must play, if the opponent takes out piece (0, %),
resp. (i,0), player O picks the symmetrical piece (i,0), resp. (0,1).

@ This makes sure that player 1 munches the bottom piece (0,0) and
dies.
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|
Finite two-player games with perfect information [4]

We just showed that player 0 — the one who starts to play — has a way of
playing — that only depends on its adversary’s move— that guarantees its
victory! i.e. we exhibited a

winning strategy for player 0.

@ All possible moves of such a game form a well-founded labeled tree

e Each node corresponds to some configuration — the root being the
initial configuration.
e Each branch — from the root to some leaf — represents a possible play.
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|
Finite two-player games with perfect information [5]

Example (Chess)

@ The initial configuration is the chessboard with the initial positions of
the various pieces and the fact that White must play.

@ The immediate successors of the initial configuration are all the
configurations that White may reach in one move. (8 pawns + 2
knights; 2 moves each).
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Finite two-player games with perfect information [6]

Definition (Finite Game Tree)
A finite game tree (T, e) is a well-founded non-empty tree 7', labeled by
some mapping e : T'— {0,1}. The two-player game with perfect
information associated with (7', e) consists in

@ placing a token on the root of the tree, and

@ for each node on which the token stands, player e(n) loses the game
if n is leaf, otherwise pushes the token to any immediate successor of

node of n. J
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Finite two-player games with perfect information [7]

Example (Game tree)
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|
Finite two-player games with perfect information [8]

Definition

A strategy for player 0 in the game associated with a finite tree (7', ¢) is a
non-empty labeled tree (o, e) satisfying

e o CT,

@ each leaf of o is also a leaf of T,

@ for each node n € o that is not a leaf:

e if e(n) = 0, then a unique immediate successor of of n belongs to o;
e if e(n) =1, then every immediate successor of n belong to o.

A strategy for 1 is defined mutatis mutandis.
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|
Finite two-player games with perfect information [9]

o We say a player applies a strategy if the game is restricted to this
strategy.

o If player O applies a strategy o and player 1 applies a strategy 7, then

the game restricts itself to a unique play: the tree whose only branch
is

onNT.
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Finite two-player games with perfect information [10]

Example (Strategy for 0)

Figure: A strategy for player O in the previous game.
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Finite two-player games with perfect information [11]

Example (Strategy for 1)

Figure: A strategy for player 1 in the previous game.
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o
Finite two-player games with perfect information [12]

Definition

In the game associated with a finite tree (T, ¢),

Il
L

@ a strategy o for player 0 is winning if for every leaf f € o, e(f)
@ a strategy 7 for player 1 is winning if for every leaf f € o, e(f)

Definition

A game is determined if one of the players has a winning strategy.
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Finite two-player games with perfect information [13]

@ For certain class of games, the fact that games are determined is a
very strong statement. It transforms a negative assertion in a positive
one:

o (player J has no w.s.) = (player 1 — J has a w.s.).

@ Henceforth, a determinacy principle is a highly non constructive
statement.

e it is claimed that a w.s. exists for a given player without being able to
construct even one.
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|
Finite two-player games with perfect information [14]

Example (Rectangular Chocolate Bar)

@ We know that if n = m # 0, then player O has a w.s.

@ Assuming that this game is determined — confirmed by Theorem 7?7 —
we show that player O has a w.s. whatever the size (n,m) # (0,0).

o & = = = vae
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|
Finite two-player games with perfect information [15]

@ Since this game is determined, in order to show that 0 has a w.s. it is
enough to show that its opponent does not have one.

@ We proceed by contradiction and assume that player 1 has a w.s. 7
and we build a w.s. ¢ for player O.
We consider two different plays : L and R.
@ In L, player 1 applies a w.s. 7.
@ In R, player 1 plays freely. Player O applies a strategy o.
We define o by:
@ Lo : player O eats up (n,m);
@ [y is the answer by 7 to Lo; of player 0;
@ Ry; is a copy by player O of player 1's Lo; 1
@ Rg;11 is any free choice by 1.
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Finite two-player games with perfect information [16]
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o
Evaluation Game [1]

@ Although they may seem abstract, these games lie at the core of what
it takes to evaluate a formula:

e to check whether or not holds true in a given model, comes down to
solving a game.

@ One particular example is evaluation games for 1st order logic [2].
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Evaluation Game [2]

Definition
Let . be a 1st order language,

@ ./ an ZL-structure and
@ ¢ a closed .Z-formula whose connectors are among {—, V, A}.

We define the evaluation game EV (¢, .#) as a finite two-player game
with perfect information.

o Players are called
o \erifier

o Falsifier.

@ Moves are defined by:
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o
Evaluation Game [3]

Definition

’ if ¢ is ‘ who's turn ‘ goes on with ‘

atomic no one play stops
dx V picks a in the domain of.Z Vla/a]
YV F picks a in the domain of.#Z V0a/a]

(¢o V ¢1) V choses i € {0,1} oy
(¢o N ¢1) F choses i € {0,1} o
—) V and F switch roles Y
By construction, one stops on an atomic formula of the form
R(tq,... =tn)[a1/z1,--.,ak/xk] where x1, ...,z are all variables from
R(t1,...,ty) and a1, ..., ay are elements from |.Z|.
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o
Evaluation Game [4]

Definition
\erifier wins iff

V. V. v
(tl[al/zl,...,ak/zkp e ’tn[a1/zl,..,,ak/mk]> €R

@ The rules are defined in order to obtain:

Theorem

If & is a 1st order language, .# any model, ¢ any .£-formula whose
connectors are among {—,V,A}. Then

Verifier has a w.s. in EV (¢, #) <= ¢ holds true in 4 .
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|
Infinite two-player games with perfect information [1]

@ Going from finite to infinite games is a giant leap.

o Everything becomes less easy and more technical since topological
notions are required.

@ Among all the infinite two-player games with perfect information, one
stands out: the Gale-Stewart game.
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|
Infinite two-player games with perfect information [2]

Definition

Given L C AY, the Gale-Stewart game ¢ (L) is an infinite game in which
the players (/ and /I) alternately chose a € A. Player [ starts. Player /
wins iff the infinite word @ constructed during the play satisfies @ € L.
Otherwise, player /I wins.

@ @ @ @
L @ @ ®

Figure: Gale-Stewart Game.

Firstly consider for each non-null integer n, a finite version ¥, (M) for
M C A?". Clearly, these games are determined. Not only because these

J. Duparc ( & [T({it) Logic, Automata and Games Lyon, 23-27 January 2017 32 /97



|
Infinite two-player games with perfect information [3]

are finite two-player games with perfect information, but also because the
formula that expresses that / does not have a w.s.:

ﬂEaOValﬂaQVag ...Yagp_1 aeM
is logically equivalent to the formula
VaOEIaNaQEIag e Ela2n_1 a ¢ M

which says that // has a w.s..

Gale-Stewart determinacy can be regarded as a generalisation of this
phenomenon to the “infinite formula” describing the existence of a w.s.
for player /. Indeed determinacy claims that if / does not have a w.s., i.e.

—JdagVaidasVas...... aelrL,
then player /I has one:
VagdaiVaodas ... ... a¢ L.
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|
Infinite two-player games with perfect information [4]

@ However, contrary to what happens in the finite case, determinacy is
not a simple statement in the infinite one.

o One can show there exist non-determined games (this requires the
Axiom of Choice.)

e On can show these games are determined for a large class of sets (the
Borel sets).
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A non-determined game [1]

Definition (Banach-Mazur Game)

Given L C A“, the Banach-Mazur game % (L) is identical to the
Gale-Stewart game ¢ (L) except that players play non-empty words (€ A*)
instead of letters (€ A).

Player | wins if the concatenation @ of the words played satisfies @ € L.

Otherwise /I wins. )

/ e e
I Uiy 1 - - Uiy

Figure: Banach-Mazur Game.

J. Duparc ( & [T({it) Logic, Automata and Games Lyon, 23-27 January 2017 35 /97



o
A non-determined game [2]

@ Given any set A and L C A¥, one can easily define A’ and L' C A%
such that the game ¢ (L’) simulate the game % (L) so that the
existence of a w.s. for a player in the first game induces the existence
of a w.s. for the same player in the second game.

@ Therefore, to show that there exists L' s.t. ¢(L’) is not determined,
it is enough to come up with a set L such that % (L) is not
determined.

Definition

F C{0,1}* is a flip set if for all Z, € {0,1}%, si

3k (wp # yu AVn # k (zn = yn)), i.e. T and § only differ by a single digit
,thenz € F <— y ¢ F.
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A non-determined game [3]

Proposition (AC)
If F C{0,1}“ is a flip set, then the game % (F) is not determined. J

Towards a contradiction, we assume that player /I has a w.s. 7 which he
applies in the lower play, and we show that player / also has a w.s. in the

upper play.

/ 110010 111011

I 010001110 001

/ ()] 010001110 001
1 10010 111011

Figure: Player Il applies strategy T in the lower play
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R
A non-determined game [4]

Similarly one shows that if Player / has a w.s., then /I also has one.
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o
Borel Sets [1]

@ there exists a vast class of sets for which all Gale-Stewart games are
determined. Its definition is topological: the class of Borel sets
o We equip the set A“ with the usual topology (the product topology of
the discrete topology on A):

@ Basic open sets are of the form N, = uA® for u € AT,

@ Open sets are then of the form U N, for any set U C A"
uelU

@ (U =0 and U = A respectively yield ) and A%.)

e N¥ is similar to R (equipped with the usual topology: basic open sets
are of the form ]z, y[) since it is homeomorphic — i.e. isomorphic with
regard to the topological structure —to R \ Q.

N2R\NQ
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Borel Sets [2]
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o
Borel Sets [3]

Definition
The class of Borel subsets of A% is the least that
@ contains the open sets, and

@ is closed under

@ countable union and
@ complementation.
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o
Borel Sets [4]

Example
Borel subsets of {0,1}“:

Q {0“} : it is a closed set (the complement of an open set) since

= J m

ue{0,1}*1

@ {0,1}*1% : since it is

U ul?

ue{0,1}*

(a countable union of closed sets).

e Given any tree T' C A*, [T] denotes the set of its infinite branches

[T]={Gc A |YneNT|neT}.
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o
Borel Sets [5]

e Notice that [T]° = | | vA“.
vg¢T
open
e Forany B C A%
B is closed <= B =[T]

for some tree T' C A* [6].

@ As soon as they were introduced, the Borel sets were set up in a nice
hierarchy by Baire.
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o
Borel Sets [6]
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Borel Sets [7]

Definition (Borel Hierarchy)

By induction on ordinals, we define
o XY = {open}

o I\ = {E' | Ec =0}

o X =< JE.|E e | IO
neN B<a

o AV =30 N110.

— 0 _ 0 __ 0 _ 0

s= Usi- Ym=Usi- U
aceOn acOn a<wi a<wi

J. Duparc ( & [T({it)
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o
Borel Sets [8]

Example

Ainsi, parmi les sous-ensembles de I'espace {0, 1}*,
o {0¥}erl
e {0,1}*1¥ € =Y
o ({0,1}0)" e 119

Indeed,
{0,1}* = [{0,1}7]
{0,131+t = ({0,1}*0)"
and
({0,1}70)* = () ({0,1}*0)"{0,1}.
neN 2?
I3
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o
Borel Sets bis [1]

Example

Let o = (A, Q,qi, 0, F') be a deterministic Biichi automaton and @ an
infinite word,

ac X (o) <= there exists infinitely many n s.t. pz(n) € F
< Vm 3In>m pz(n) € F
< VYm dn>m pz € M,

where
M ={p€{Q} | p(n) € F}

open

One notices that f : @ — pgz is continuous.
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o
Borel Sets bis [2]

Example
On={d e {A} | pz e M}=ftH
{ae{A}”|p p={
open
Hence
=8
—
meNn>m
——
1T
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Borel Sets bis [3]

9. .0.0,.0
0 e®°0%0

Figure: Borel Hierarchy

This is a characterization from below. Another one, from above relies on

Suslin’s theorem [6].
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o
Borel Sets bis [4]

Definition (Analytic Set)
o/ C A“ is analytic if there exists some tree T C (N x A)" s.t.

e < I¥reN’TxdelT]

where & x @ stands for (z9, ag)(z1,a1)(x2,az) ...

Same holds if one replaces [T] by any Borel set.
Theorem (Suslin)

For all A countable and B C AY,

B Borel <= B and B® are both analytic.
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o
Borel Sets bis [5]

Example
Let & = (A, Q, ¢, A, F) be any Biichi non-deterministic automaton, and
d any infinite word,

ac L (o) <= thereexists p; and infinitely many n s.t. pz(n) € F
= Hpan3n>mpa( )EF

<~ dp (p,a mG
R,_/
113

where

Gm ={(p,@) € N* X A | (pm, @, pm41) €A A In>m p, € F}.
01;;71
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o
Borel Sets bis [6]

Example
@ As the projection of a Borel set, this language is analytic.
@ Since w-regular languages are closed under complementation,

Z (<) is Borel

Theorem (Borel Determinacy, Martin)
Given any A and B C A% Borel,

the Gale-Stewart game ¥ (B) is determined.
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o
Continuous Reductions [1]

Reduction

Definition
e X <Y <« dfsimple (zreX < f(z)eY) J

@ simple w.r. to topological complexity means continuous
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Continuous Reductions [2]

Definition
A function f : A“ — B“ is continuous if for each open set & C BY,

f~10 is an open subset of A% .

@ It corresponds to “not lifting up the pen!" on the real line.

@ Here there is an elegant definition in terms of games.

Proposition
Soit f : AY — BY,

f is continuous <= player Il has a w.s. in € (f).

Lyon, 23-27 January 2017 54 / 97
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Continuous Reductions [3]

Definition
Given f : A“ — BY, the game that characterizes continuous functions

% (f) is an infinite game in which players (/ and /I) alternately chose
a € A and b € B. Player [ starts. Player Il can skip. Player // wins iff

f(@) =b.

Otherwise, | wins

/”® @@® @ @@

Figure: Game % (f).
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|
Continuous Reductions [4]

Definition
e X <Y <« dfsimple (zeX < f(z)eY)
YeC

@ Y is C—complete <+ {X <Y,any X €C

@ X is less complicated than Y

Reduction Games

Definition
X <uw Y <= 3f continuous (x € X & f(z)€Y)
<= llhasaws. in # (X,Y)
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Continuous Reductions [5]

Wadge Ordering

Definition
X <w Y <= 3f continuous (zr € X < f(z)€Y)
<= JIlhasaws. in 7 (X,Y)

J. Duparc ( & [T({it) Logic, Automata and Games Lyon, 23-27 January 2017 57 / 97



-]
Continuous Reductions [6]

LW (X, Y)
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Continuous Reductions [7]

LW (X, Y)

To
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Continuous Reductions [8]

LW (X, Y)

To
N
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Continuous Reductions [9]

LW (X, Y)

To
N
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o
Continuous Reductions [10]

LW (X, Y)

To
N

e
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o
Continuous Reductions [11]

LW (X, Y)

To
N

Ve
il
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o
Continuous Reductions [12]

LW (X, Y)

To
N
S
v
il
hS
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o
Continuous Reductions [13]

LW (X, Y)

To
N
S
v
il
hS
S
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o
Continuous Reductions [14]

LW (X, Y)

To

il
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o
Continuous Reductions [15]

LW (X, Y)

To
N
S
v
il
hS
S
v
)
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o
Continuous Reductions [16]

LW (X, Y)

To
N
S
v
il
hS
S
v
)
N
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o
Continuous Reductions [17]

LW (X, Y)

To
N
S
v
il
hS
S
v
)
N
S
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o
Continuous Reductions [18]

LW (X, Y)

To
N
S
v
il
hS
S
v
)
N
S
v
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o
Continuous Reductions [19]

J. Duparc (

& [t

)

I 7 (X,Y)

To
il
)
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o
Continuous Reductions [20]

J. Duparc (

& [t

)

I 7 (X,Y)
To
N
v
il
N
v
T2
N
v
N
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o
Continuous Reductions [21]

J. Duparc (

& [t

)

LW (X, Y)
Zo
N\
S
v
il
N
S
v
T2
N\
S
v
N
n
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o
Continuous Reductions [22]

J. Duparc (

& [t

)

LW (X, Y)
Zo
N\
s
e
il
N
S
v
T2
N\
S
e
N
U1
v
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o
Continuous Reductions [23]

J. Duparc (

& [t

)

LW (X, Y)
Zo
N\
S
v
il
N
S
v
T2
N\
S
v
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n
v
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o
Continuous Reductions [24]

J. Duparc (

& [t

)

LW (X, Y)
Zo
N\
s
e
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S
e
N
U1
v
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o
Continuous Reductions [25]

LW (X, Y)
To
N\
S
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N
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S
v
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n
v
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o
Continuous Reductions [26]

LW (X, Y)
Zo
N\
S
v
il
N
S
v
T2
N\
S
v
N
U1
v
Ty
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Y2
v
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o
Continuous Reductions [27]

L W (X,)Y)
Zo
hY
S
v
Ty
N
S
e
9 Il wins iff
N s (reXeoyeY)
v
T3
N\
N
e
Ty
pY
Y2
b
T Y
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o
Continuous Reductions [28]

Wadge Ordering

Definition
X <w Y <= 3f continuous (xr € X < f(z)€Y)
<= llhasaws. in 7 (X,Y)

YeC
X <w Y , any Xecl
e C is a Wadge Class <= some Y € C is C—complete

@ YV is C—complete <= {

L < M stands for L <,, M and M £, L.
L =, M stands for L <, M and M <, L.
X < Y = XxC <, vC
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Continuous Reductions [29]

Example

f
Example
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Continuous Reductions [30]
Example
0 0
@—*T ——0 % Q—*T ——0
0,1 0,1
Example
0 0
0 1 ﬂ 1
?\—/'9 e ?\—/’9
0,1 0,1
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o
Continuous Reductions [31]

Example

The following Biichi automaton % is II3-complete.

G0

e Since .Z(%) is deterministic Biichi, £ (%) € II)
o Let B =(),cn On be any IT3-subset of A“. We show
0

B:nnEN ﬁn <w
0,1

f

J. Duparc ( & [T({it) Logic, Automata and Games Lyon, 23-27 January 2017 83 /97



o
Continuous Reductions [32]

The relation <,, is a partial ordering:

o reflexive

@ transitive
With determinacy:

© anti-chaines have length at most two;

@ it is well-founded, i.e. there is no infinite descending chain

Ag >p A1 > Ao > oo >0 A > Antl > e -
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-]
Continuous Reductions [33]

© The first result is an immediate consequence of the following lemma

Lemma (Wadge)
Given L C A and M C B, if # (L, M) is determined, then

L%y M= M <, Lt

@ The second relies on an elegant construction [6].
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-]
Continuous Reductions [34]

Figure: The Wadge Hierarchy.

Proposition
If o/ is some deterministic parity automaton, then

ZL() € A =2 NIIY.
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Continuous Reductions [35]

ac Z(d)
— Fi<p(I®C(pz(n)=2i A ImVn>mC(pz(n)) < 21’)
<~ Fi<p(YmIn>mC(pz(n))=2i A HmVnsz(pa(n))SQi).

I3 =5

=5

Since Z() = Z(%), we get L() € 8.
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Continuous Reductions [36]

0 0,1 0 0,1 0 0

() () () () (y ()

00 00 0_—0 00
0,1 0,1

Figure: w-regular languages complete resp. for X9, 19, 9, TIY.

@ As shown by Wagner [12] and Selivanov [11], the Wadge ordering
yields a much finer analysis.

@ For this purpose, we consider (The following well-ordering)
the set of all finite decreasing (at large) sequences of integers

equipped with the lexicographic ordering <,

e.g.
888887644433222222222222221000
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-]
Continuous Reductions [37]

@ This well-ordering is isomorphic to the ordinal w®.
The isomorphism maps

NE > N1 > ... > Ng to w™ + w1 4+, 4 "0,

@ To each such finite sequence u we associate a deterministic parity
automaton &7, s.t

U <jog V = Gy <y .

@ We first define for each integer n <7,
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Continuous Reductions [38]

0,1
a&

Figure: Automaton <.

Figure: Automaton <7, (the coloring corresponds to n even).

J. Duparc ( & [T({it) Logic, Automata and Games Lyon, 23-27 January 2017 90 / 97



-]
Continuous Reductions [39]

@ To each sequence u = ngng_1 ...ng satisfying
ng > Ng—1 > ... > Ng, We associate three automata
Q A,
9 _JZ{u.
Q +4,

whose graph are represented by the following figures.
o the labelling does not matter as long as it makes them deterministic.

dnl ﬂnz ‘ank
I N N NS
"o NN N AN
gL g gL

Figure: Automaton a7y, . -
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Continuous Reductions [40]

Figure: Automaton —ay,, . n,-

Ay Ay, A, Ay,
NSNS N N

\%E/ \%C/ \Q{n/ N A \M

no n1 ng ng

Figure: Automaton *.47,,,  p,.
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J. Duparc (

Example

Continuous Reductions [41]

A deterministic labelling for o#1qg.

& [t

)

Figure: Automaton af71q.
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o
Continuous Reductions [42]

Proposition

Given u, v two finite decreasing sequences of integers.
Q@ Iy L —Ay and —y, Loy Ay
Q v, <, £, and —,, <, T,
Q Ifu <jey v, then £, <., Ay, and £, <, —y.
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Continuous Reductions [43]

Theorem

If o/ is any deterministic parity automaton, then there exists some
non-empty finite decreasing sequence of integers u s.t. (only) one of the
following three possibilitis occurs:

Q J=,9
Q@ J =,
Q =, -,
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Counter Automata and Tree Automata [1]

@ If one considers PushDown automata, or even I-counter automata
(with Biichi acceptance conditions)

The Wadge hierarchy of languages recognized by non-deterministic
such machines is inextricable[3].

e Olivier Finkel showed that it is as complicated as the same problem for
Turing machines
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o
Counter Automata and Tree Automata [2]

@ If one considers infinite-tree-automata,

e In case of deterministic parity automata, Damian Niwirski and Igor
Walukiewicz [9] showed that the languages recognized are either
complete for the class of co-analytic sets, or they sit inside the class
119,

e Later Filip Murlak gave a complete description of its Wadge hierarchy
(8.

@ In case of non-deterministic parity automata, the Wadge hierarchy of
w-regular tree languages still highly remains a mystery.
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