2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

An introduction to classical realizability

Alexandre Miquel

January 27th, 2017 - EJCIM'17 - Lyon

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

The Curry-Howard correspondence

Proof theory	Functional programming

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

The Curry-Howard correspondence

Proof theory	Functional programming	
Proposition (formula)	Data type	
Proof (derivation)	Program (or data)	

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

The Curry-Howard correspondence

The dictionary:

Proof theory	Functional programming	
Proposition (formula) Proof (derivation) p is a proof of the formula A	Data type Program (or data) <i>p</i> is a program of type <i>A</i>	

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二直 - 釣�?

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

The Curry-Howard correspondence

Proof theory	Functional programming	
Proposition (formula) Proof (derivation)	Data type Program (or data)	
p is a proof of the formula A	p is a program of type A	
$A \wedge B$,	A imes B,	

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

The Curry-Howard correspondence

Proof theory	Functional programming
Proposition (formula) Proof (derivation)	Data type Program (or data)
p is a proof of the formula A	p is a program of type A
$A \wedge B, A \lor B,$	$A \times B, A + B,$

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

(日)、

ж

Witness extraction

The Curry-Howard correspondence

Proof theory	Functional programming	
Proposition (formula) Proof (derivation)	Data type Program (or data)	
p is a proof of the formula A	p is a program of type A	
$A \wedge B, A \lor B, A \Rightarrow B$	$A \times B, A + B, A \rightarrow B$	

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

The Curry-Howard correspondence

Proof theory	Functional programming	
Proposition (formula) Proof (derivation)	Data type Program (or data)	
p is a proof of the formula A	p is a program of type A	
$A \wedge B$, $A \vee B$, $A \Rightarrow B$	$A \times B$, $A + B$, $A \rightarrow B$	
Deduction rule Proof checker	Typing rule Type checker	

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

(日) (同) (日) (日)

Witness extraction

The Curry-Howard correspondence

Proof theory	Functional programming	
Proposition (formula)	Data type	
Proof (derivation)	Program (or data)	
p is a proof of the formula A	<i>p</i> is a program of type <i>A</i>	
$A \wedge B$, $A \vee B$, $A \Rightarrow B$	$A \times B$, $A + B$, $A \rightarrow B$	
Deduction rule	Typing rule	
Proof checker	Type checker	
Cut elimination	Computation	
Cut-free proof	Value	

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

・ロト ・聞ト ・ヨト ・ヨト

ж

Witness extraction

The Curry-Howard correspondence

Proof theory	Functional programming		
Proposition (formula)	Data type		
Proof (derivation)	Program (or data)		
p is a proof of the formula A	p is a program of type A		
$A \wedge B$, $A \vee B$, $A \Rightarrow B$	$A \times B$, $A + B$, $A \rightarrow B$		
Deduction rule	Typing rule		
Proof checker	Type checker		
Cut elimination	Computation		
Cut-free proof	Value		
Proof of a lemma	Sub-program		
Theory (statements & proofs)	Module (interface & implem.)		

Core lang	uage: the λ -o	calculus		[Church'41]
	nd-order arithmetic (PA2)	Extracted programs	Classical realizability 0000000000000000	Witness extraction 0000000000000000

- A universal language of functions
- Only three constructions: variable, abstraction, application:

Language	Var.	Abstraction	Application
λ -calculus	X	$\lambda x . \langle expr \rangle$	$\langle expr \rangle \langle expr \rangle$
Math.	x	$x \mapsto \langle expr \rangle$	$f(\langle expr \rangle)$
LISP	x	$(\texttt{lambda}(x) \langle expr \rangle)$	$(\langle expr \rangle \langle expr \rangle)$
Python	x	lambda x : $\langle expr angle$	$\langle expr \rangle (\langle expr \rangle)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Core lan	guage: the λ -	calculus		[Church'41]
0000000	000000000000000000000000000000000000000	000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction

- A universal language of functions
- Only three constructions: variable, abstraction, application:

Language	Var.	Abstraction	Application
λ -calculus	X	$\lambda x . \langle expr \rangle$	$\langle expr \rangle \langle expr \rangle$
Math.	x	$x \mapsto \langle expr \rangle$	$f(\langle expr \rangle)$
LISP	x	$(\texttt{lambda}(x) \langle expr \rangle)$	$(\langle expr \rangle \langle expr \rangle)$
Python	x	lambda x : $\langle expr angle$	$\langle expr \rangle (\langle expr \rangle)$

• Computation rule = β -reduction

$$(\lambda x \cdot x + x + 18)(3 \times 4) \succ_{\beta} (3 \times 4) + (3 \times 4) + 18$$

 $\succ \cdots \succ 42$

• Formally: $(\lambda x \, . \, t) \, u \, \succ_{\beta} \, t\{x := u\}$

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

From proofs to programs

$\overline{\forall x \left(P(x) \Rightarrow Q(x) \right) \ \Rightarrow \ \forall x \left(Q(x) \Rightarrow R(x) \right) \ \Rightarrow \ \forall x \left(P(x) \Rightarrow R(x) \right)}$

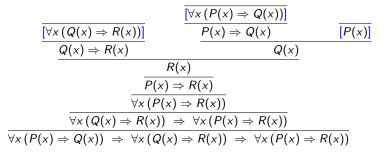
2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

From proofs to programs



2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

From proofs to programs

$$\frac{\overline{[\forall x (Q(x) \Rightarrow R(x))]}}{Q(x) \Rightarrow R(x)} \overset{\text{Ax.}}{\forall -\text{elim}} \frac{\overline{[\forall x (P(x) \Rightarrow Q(x))]}}{P(x) \Rightarrow Q(x)} \overset{\text{Ax.}}{\forall -\text{elim}} \frac{\overline{[P(x)]}}{P(x) \Rightarrow Q(x)} \overset{\text{Ax.}}{\forall -\text{elim}} \overset{\text{Ax.}}{P(x) \Rightarrow Q(x)} \overset{\text{Ax.}}{\Rightarrow -\text{elim}} \overset{\text{Ax.}}{\Rightarrow -\text{elim}} \overset{\text{Ax.}}{\Rightarrow -\text{elim}} \overset{\text{Ax.}}{P(x) \Rightarrow Q(x)} \overset{\text{Ax.}}{\Rightarrow -\text{elim}} \overset{$$

Introduction

Extracted programs

~

Witness extraction

From proofs to programs

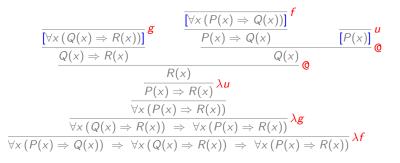
$$\frac{\left[\forall x \left(Q(x) \Rightarrow R(x)\right)\right]}{Q(x) \Rightarrow R(x)}^{g} \qquad \frac{\left[\forall x \left(P(x) \Rightarrow Q(x)\right)\right]}{P(x) \Rightarrow Q(x)}^{t} \qquad \boxed{P(x)}^{u} \\ \frac{Q(x) \Rightarrow Q(x)}{Q(x)} \\ \frac{Q(x)}{Q(x)} \\ \frac{Q(x)}{Q(x$$

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

From proofs to programs



 $\lambda f \cdot \lambda g \cdot \lambda u \cdot g (f u)$

d-order arithmetic (PA2) 00000000000000000 Extracted programs

Classical realizability 00000000000000000 Witness extraction

Significance of the Curry-Howard correspondence

- Theoretical impact on:
 - Proof theory
 - Constructive mathematics
 - Category theory
 - Denotational semantics
 - Functional programming
- Theoretical by-products:
 - Type theory (Martin-Löf),
 - Linear logic (Girard)

d-order arithmetic (PA2) 00000000000000000 Extracted programs

Classical realizability 00000000000000000 Witness extraction

Significance of the Curry-Howard correspondence

- Theoretical impact on:
 - Proof theory
 - Constructive mathematics
 - Category theory
 - Denotational semantics
 - Functional programming
- Theoretical by-products:
 - Type theory (Martin-Löf),
 - Linear logic (Girard)
- Applications:
 - Proof assistants: Coq, Agda
 - Program certification
 - Program extraction

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From intuitionistic logic to classical logic

- For a long time, the Curry-Howard correspondence was limited to intuitionistic logic and constructive mathematics, since it was (thought to be) incompatible with classical reasoning principles, such as for instance:
 - The law of excluded middle: $A \lor \neg A$
 - Double-negation elimination: $\neg \neg A \Rightarrow A$
 - Reductio ad absurdum: from the absurdity of $\neg A$, deduce A
 - Most De Morgan laws, e.g.: $\neg(A \land B) \Rightarrow \neg A \lor \neg B$
 - Peirce's law: $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$
 - The full axiom of choice
- However, *a lot* of interesting mathematics can be formalized in intuitionistic logic (i.e. without using classical reasoning)

Introduction

From intuitionistic logic to classical logic

 In 1990, Griffin's discovered a connection between classical reasoning and control operators (call/cc)

$$\operatorname{call/cc}$$
 : $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$ (Peirce's law)

- A new paradigm for the Curry-Howard correspondence:
 - Classical reasoning = programming with continuations = computing by trial/error

Introduction

Extracted programs

Classical realizability

From intuitionistic logic to classical logic

(2/2)

• In 1990, Griffin's discovered a connection between classical reasoning and control operators (call/cc)

$$\mathsf{call}/\mathsf{cc} : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$$
 (Peirce's law)

- A new paradigm for the Curry-Howard correspondence:
 - Classical reasoning = programming with continuations = computing by trial/error
- Many classical λ -calculi:
 - $\lambda \mu$ [Parigot 1992]

 λ -sym
 [Barbanera & Berardi 1996]

 λ_c [Krivine 1994]

 $\bar{\lambda} \mu \tilde{\mu}$ [Curien & Herbelin 2000]

Introduction

Extracted programs

Classical realizability

From intuitionistic logic to classical logic

(2/2)

• In 1990, Griffin's discovered a connection between classical reasoning and control operators (call/cc)

$$\mathsf{call}/\mathsf{cc} : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$$
 (Peirce's law)

- A new paradigm for the Curry-Howard correspondence:
 - Classical reasoning = programming with continuations = computing by trial/error
- Many classical λ -calculi:
 - $\lambda \mu$ [Parigot 1992] λ -sym[Barbanera & Berardi 1996] λ_c [Krivine 1994] $\bar{\lambda}\mu\tilde{\mu}$ [Curien & Herbelin 2000]

Classical realizability

[Krivine '00, '03, '09]

What is classical realizability?

- An operational semantics for the programs extracted from classical proofs, formulated using the tools of model theory
 - Based on the connection between Peirce's law and call/cc
 - Allows to predict the behavior of classical programs
 - Interprets the Axiom of Dependent Choices (DC) [K. 2003]

A/I	also at a structure of the	. 1. 11. 2		
00000000	000000000000000000000000000000000000000	0000000000	00000000000000	000000000000000000000000000000000000000
ntroduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction

What is classical realizability?

- An operational semantics for the programs extracted from classical proofs, formulated using the tools of model theory
 - Based on the connection between Peirce's law and call/cc
 - Allows to predict the behavior of classical programs
 - Interprets the Axiom of Dependent Choices (DC) [K. 2003]
- Initially designed for PA2, but extends to:
 - Higher-order arithmetic (PA ω)
 - Zermelo-Fraenkel set theory (ZF) [K. 2001, 2012]
 - The calculus of inductive constructions (CIC) [M. 2007] (with classical logic in Prop)

What is	classical realiz	ability?			
00000000	0000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction	

- An operational semantics for the programs extracted from classical proofs, formulated using the tools of model theory
 - Based on the connection between Peirce's law and call/cc
 - Allows to predict the behavior of classical programs
 - Interprets the Axiom of Dependent Choices (DC) [K. 2003]
- Initially designed for PA2, but extends to:
 - Higher-order arithmetic ($PA\omega$)
 - Zermelo-Fraenkel set theory (ZF) [K. 2001, 2012]
 - The calculus of inductive constructions (CIC) [M. 2007] (with classical logic in Prop)
- Deep connections with Cohen forcing [K. 2011]
 → can be used to define new models of PA2/ZF [K. 2012]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction
0000000

Extracted programs

Classical realizability 00000000000000000 Witness extraction
00000000000000000

Plan

- 2 Second-order arithmetic (PA2)
- 3 Extracted programs
- 4 The classical realizability interpretation

5 Witness extraction

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 差|||の��

Introduction
00000000

 Extracted programs

Classical realizability 00000000000000000

Plan

- 2 Second-order arithmetic (PA2)
- 3 Extracted programs
- 4 The classical realizability interpretation

5 Witness extraction

▲□> <圖> <≧> <≧> <≧> <</p>

The language of (minimal) second-order logic

Second-order logic deals with two kinds of objects:

- 1st-order objects = individuals (i.e. basic objects of the theory)
- 2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms	e,e'	::=	$x \mid f(e_1,\ldots,e_k)$
Formulas	А, В		$\begin{array}{ll} X(e_1,\ldots,e_k) & & A \Rightarrow B \\ \forall x A & & \forall X A \end{array}$

- Two kinds of variables
 - 1st-order variables: x, y, z, ...
 - 2nd-order variables: X, Y, Z, ... of all arities k > 0

 Extracted programs

Classical realizability

The language of (minimal) second-order logic

• Second-order logic deals with two kinds of objects:

- 1st-order objects = individuals (i.e. basic objects of the theory)
- 2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms	e,e'	::=	$x \mid f(e_1,\ldots,e_k)$
Formulas	А, В		$\begin{array}{ll} X(e_1,\ldots,e_k) & & A \Rightarrow B \\ \forall x \ A & & \forall X \ A \end{array}$

- Two kinds of variables
 - 1st-order variables: x, y, z, ...
 - 2nd-order variables: X, Y, Z, ... of all arities $k \ge 0$
- 2nd-order arithmetic: individuals represent natural numbers

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
First-or	der terms			(1/2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Defined from a first-order signature Σ (as usual):

First-order terms
$$e, e' ::= x | f(e_1, \ldots, e_k)$$

- f ranges over k-ary function symbols in Σ
- constant symbol = function symbol of arity 0

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	00000000000000000000	00000000000	0000000000000000	000000000000000000000000000000000000000
First-or	der terms			(1/2)

• Defined from a first-order signature Σ (as usual):

First-order terms
$$e, e' ::= x | f(e_1, \ldots, e_k)$$

- f ranges over k-ary function symbols in Σ
- constant symbol = function symbol of arity 0
- In what follows we assume that the signature Σ contains:
 - a constant symbol 0 (zero)
 - a unary function symbol s (successor)
 - binary function symbols +, \times , (truncated subtraction)
 - function symbols for all primitive recursive functions (more generally)

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	00000000000000000000	00000000000	0000000000000000	000000000000000000000000000000000000000
First-or	der terms			(1/2)

• Defined from a first-order signature Σ (as usual):

First-order terms
$$e, e' ::= x | f(e_1, \ldots, e_k)$$

- f ranges over k-ary function symbols in Σ
- constant symbol = function symbol of arity 0
- In what follows we assume that the signature Σ contains:
 - a constant symbol 0 (zero)
 - a unary function symbol s (successor)
 - binary function symbols +, \times , (truncated subtraction)
 - function symbols for all primitive recursive functions (more generally)

• Peano numerals:
$$\underbrace{s(\cdots s(0)\cdots)}_{n}$$
 written n $(n \in \mathbb{N})$

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	00000000000000000000	00000000000	0000000000000000	000000000000000000000000000000000000000
First-or	der terms			(1/2)

• Defined from a first-order signature Σ (as usual):

First-order terms
$$e, e' ::= x | f(e_1, \ldots, e_k)$$

- f ranges over k-ary function symbols in Σ
- constant symbol = function symbol of arity 0
- In what follows we assume that the signature Σ contains:
 - a constant symbol 0 (zero)
 - a unary function symbol s (successor)
 - binary function symbols +, \times , (truncated subtraction)
 - function symbols for all primitive recursive functions (more generally)

- Peano numerals: $\underbrace{s(\cdots s(0)\cdots)}_{n}$ written n $(n \in \mathbb{N})$
- First-order substitution written: $e\{x := e'\}$

• Each *k*-ary function symbol *f* is interpreted by the corresponding primitive recursive function, written

 $f^{\mathbb{IN}}$: $\mathbb{IN}^k \to \mathbb{IN}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The constant symbol 0 is interpreted by $0^{\mathbb{N}} = 0 \ (\in \mathbb{N})$

• Each *k*-ary function symbol *f* is interpreted by the corresponding primitive recursive function, written

$$f^{\mathbb{IN}}$$
 : $\mathbb{IN}^k \to \mathbb{IN}$

The constant symbol 0 is interpreted by $0^{\mathbb{N}} = 0 \ (\in \mathbb{N})$

 The denotation in IN (i.e. the value) of a closed first-order term e is written e^N. For instance:

$$0^{\mathbb{N}} = 0$$

$$4^{\mathbb{N}} = (s(s(s(s(0)))))^{\mathbb{N}} = 4$$

$$((2-3) + s(3 \times 4))^{\mathbb{N}} = 13$$

Introduction 00000000	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability 0000000000000000	Witness extraction 0000000000000000
Formula	as			(1/2)

• Formulas of minimal second-order logic

Formulas
$$A, B ::= X(e_1, \dots, e_k) | A \Rightarrow B$$

 $| \forall x A | \forall X A$

only based on implication and 1st/2nd-order universal quantification

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Form	ulas			(1/2)
Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability 00000000000000000	Witness extraction 0000000000000000

• Formulas of minimal second-order logic

Formulas
$$A, B ::= X(e_1, \dots, e_k) | A \Rightarrow B$$

 $| \forall x A | \forall X A$

only based on implication and 1st/2nd-order universal quantification

• Implication is right-associative:

$$A_1 \Rightarrow \cdots \Rightarrow A_n \Rightarrow B$$
 means $A_1 \Rightarrow (\cdots \Rightarrow (A_n \Rightarrow B) \cdots)$

The above formula is equivalent to $(A_1 \wedge \cdots \wedge A_n) \Rightarrow B$ but without using conjunction

Form	ulas			(1/2)
Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability 00000000000000000	Witness extraction 0000000000000000

• Formulas of minimal second-order logic

Formulas
$$A, B ::= X(e_1, \dots, e_k) | A \Rightarrow B$$

 $| \forall x A | \forall X A$

only based on implication and 1st/2nd-order universal quantification

Implication is right-associative:

$$A_1 \Rightarrow \cdots \Rightarrow A_n \Rightarrow B$$
 means $A_1 \Rightarrow (\cdots \Rightarrow (A_n \Rightarrow B) \cdots)$

The above formula is equivalent to $(A_1 \wedge \cdots \wedge A_n) \Rightarrow B$ but without using conjunction

- Two kinds of substitutions:
 - 1st-order substitution, written $A\{x := e\}$ (capture avoiding)
 - 2nd-order substitution, written $A{X := P}$ (postponed)

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Formula	as			(2/2)

• Other connectives/quantifiers defined via second-order encodings:

		$ \forall Z \ Z \\ A \Rightarrow \bot $	(absurdity) (negation)
		$ \forall Z ((A \Rightarrow B \Rightarrow Z) \Rightarrow Z) \forall Z ((A \Rightarrow Z) \Rightarrow (B \Rightarrow Z) \Rightarrow Z) $	(conjunction) (disjunction)
$A \Leftrightarrow B$	≡	$(A \Rightarrow B) \land (B \Rightarrow A)$	(equivalence)
		$ \forall Z (\forall x (A(x) \Rightarrow Z) \Rightarrow Z) \forall Z (\forall X (A(X) \Rightarrow Z) \Rightarrow Z) $	(1st-order ∃) (2nd-order ∃)
$e_1 = e_2$	≡	$\forall Z(Z(e_1) \Rightarrow Z(e_2))$	(Leibniz equality)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Formula	as			(2/2)

• Other connectives/quantifiers defined via second-order encodings:

		$ \forall Z \ Z \\ A \Rightarrow \bot $	(absurdity) (negation)
		$ \forall Z ((A \Rightarrow B \Rightarrow Z) \Rightarrow Z) \forall Z ((A \Rightarrow Z) \Rightarrow (B \Rightarrow Z) \Rightarrow Z) $	(conjunction) (disjunction)
$A \Leftrightarrow B$	≡	$(A \Rightarrow B) \land (B \Rightarrow A)$	(equivalence)
		$ \forall Z (\forall x (A(x) \Rightarrow Z) \Rightarrow Z) \forall Z (\forall X (A(X) \Rightarrow Z) \Rightarrow Z) $	(1st-order ∃) (2nd-order ∃)
$e_1 = e_2$	≡	$\forall Z(Z(e_1) \Rightarrow Z(e_2))$	(Leibniz equality)

- We could also have used the De Morgan laws

that are classically equivalent

0000000 000000000000 00000000 00000000	000000000000000
Predicates	

Predicates
$$P, Q ::= \hat{x}_1 \cdots \hat{x}_k A_0$$
 (of arity k)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Predica	ites			

Predicates
$$P, Q ::= \hat{x}_1 \cdots \hat{x}_k A_0$$
 (of arity k)

Definition (Predicate application and 2nd-order substitution)

• $P(e_1, \ldots, e_k)$ is the formula defined by

$$P(e_1,...,e_k) \equiv A_0\{x_1 := e_1,...,x_k := e_k\}$$

where $P \equiv \hat{x}_1 \cdots \hat{x}_k A_0$, and where e_1, \ldots, e_k are k first-order terms

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	0000000000000000000	000000000000000000000000000000000000000
Predicat	es			

Predicates
$$P, Q ::= \hat{x}_1 \cdots \hat{x}_k A_0$$
 (of arity k)

Definition (Predicate application and 2nd-order substitution)

• $P(e_1, \ldots, e_k)$ is the formula defined by

$$P(e_1,...,e_k) \equiv A_0\{x_1 := e_1,...,x_k := e_k\}$$

where $P \equiv \hat{x}_1 \cdots \hat{x}_k A_0$, and where e_1, \ldots, e_k are k first-order terms

2nd-order substitution A{X := P} (where X and P are of the same arity k) consists to replace in the formula A every atomic sub-formula of the form

 $X(e_1,\ldots,e_k)$ by the formula $P(e_1,\ldots,e_k)$

1	ntroduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
(0000000	000000000000000000000000000000000000000	0000000000	000000000000000	000000000000000000000000000000000000000
	Predicate	es			

Predicates
$$P, Q ::= \hat{x}_1 \cdots \hat{x}_k A_0$$
 (of arity k)

Definition (Predicate application and 2nd-order substitution)

• $P(e_1, \ldots, e_k)$ is the formula defined by

$$P(e_1,...,e_k) \equiv A_0\{x_1 := e_1,...,x_k := e_k\}$$

where $P \equiv \hat{x}_1 \cdots \hat{x}_k A_0$, and where e_1, \ldots, e_k are k first-order terms

Ond-order substitution A{X := P} (where X and P are of the same arity k) consists to replace in the formula A every atomic sub-formula of the form

 $X(e_1,\ldots,e_k)$ by the formula $P(e_1,\ldots,e_k)$

• Note: Every k-ary 2nd-order variable X can be seen as a predicate:

$$X \equiv \hat{x}_1 \cdots \hat{x}_k X(x_1, \ldots, x_k)$$

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	00000000000000000	00000000000	000000000000000	000000000000000000000000000000000000000

Unary predicates as sets

• Unary predicates represent sets of individuals Syntactic sugar: $\{x : A\} \equiv \hat{x}A, e \in P \equiv P(e)$

Example: The set **N** of Dedekind numerals

 $\mathbf{N} \equiv \{x : \forall Z (0 \in Z \Rightarrow \forall y (y \in Z \Rightarrow s(y) \in Z) \Rightarrow x \in Z\}$

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	0000000000000000	00000000000	000000000000000	00000000000000000

Unary predicates as sets

• Unary predicates represent sets of individuals Syntactic sugar: $\{x : A\} \equiv \hat{x}A, e \in P \equiv P(e)$

Example: The set **N** of Dedekind numerals

 $\mathbf{N} \equiv \{x : \forall Z (0 \in Z \Rightarrow \forall y (y \in Z \Rightarrow s(y) \in Z) \Rightarrow x \in Z\}$

• Relativized quantifications:

$$\begin{array}{lll} (\forall x \in P) A(x) &\equiv & \forall x \, (x \in P \Rightarrow A(x)) \\ (\exists x \in P) A(x) &\equiv & \forall Z \, (\forall x \, (x \in P \Rightarrow A(x) \Rightarrow Z) \Rightarrow Z) \\ &\Leftrightarrow & \exists x \, (x \in P \land A(x)) \end{array}$$

00000000 0000000000 0000000 0000000 0000	Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
	00000000	0000000000000000	00000000000	000000000000000	000000000000000000000000000000000000000

Unary predicates as sets

• Unary predicates represent sets of individuals Syntactic sugar: $\{x : A\} \equiv \hat{x}A, e \in P \equiv P(e)$

Example: The set **N** of Dedekind numerals

 $\mathbf{N} \equiv \{x : \forall Z (0 \in Z \Rightarrow \forall y (y \in Z \Rightarrow s(y) \in Z) \Rightarrow x \in Z\}$

• Relativized quantifications:

$$\begin{aligned} (\forall x \in P) A(x) &\equiv \forall x (x \in P \Rightarrow A(x)) \\ (\exists x \in P) A(x) &\equiv \forall Z (\forall x (x \in P \Rightarrow A(x) \Rightarrow Z) \Rightarrow Z) \\ &\Leftrightarrow \exists x (x \in P \land A(x)) \end{aligned}$$

Inclusion and extensional equality:

• Set constructors:

$$P \subseteq Q \equiv \forall x (x \in P \Rightarrow x \in Q)$$

$$P = Q \equiv \forall x (x \in P \Leftrightarrow x \in Q)$$

$$P \cup Q \equiv \{x : x \in P \lor x \in Q\}$$
(etc.)

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	00000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Sequen	ts			

Definition (Sequent) A sequent is a pair of the form $A_1, \dots, A_n \vdash A$ where A_1, \dots, A_n, A are formulas • A_1, \dots, A_n are the hypotheses, which form the context • A is the thesis

● ⊢ is the entailment symbol

(that reads: 'entails')

 $(n \ge 0)$

- Sequents are usually written $\Gamma \vdash A$ (Γ finite list of formulas)
- $\Gamma \vdash A$ means: "under the hypotheses in Γ , the formula A holds"
- Notations $FV(\Gamma)$, $\Gamma\{x := t\}$ extended to finite lists Γ

 Extracted programs

Classical realizability 00000000000000000

Rules of inference & systems of deduction

Definition (Rule of inference)

A rule of inference is a pair formed by a finite set of sequents $\{\Gamma_1 \vdash A_1, \dots, \Gamma_n \vdash A_n\}$ and a sequent $\Gamma \vdash A$, usually written

$$\frac{\Gamma_1 \vdash A_1 \quad \cdots \quad \Gamma_n \vdash A_n}{\Gamma \vdash A}$$

•
$$\Gamma_1 \vdash A_1, \dots, \Gamma_n \vdash A_n$$
 are the premises of the rule $(n \ge 0)$

• $\Gamma \vdash A$ is the conclusion of the rule

Definition (System of deduction)

A system of deduction is a set of inference rules

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Natural deduction for classical 2nd-order logic

(NK2)

• Here, we work in system NK2, whose deduction rules are:

(Axiom)	$\overline{\Gamma dash A}$ if $A \in \Gamma$	
(⇒-intro,elim)	$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \qquad \qquad \frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B}$	
$(\forall^1 ext{-intro,elim})$	$\frac{\Gamma \vdash A}{\Gamma \vdash \forall x A} \text{ if } x \notin FV(\Gamma) \qquad \frac{\Gamma \vdash \forall x A}{\Gamma \vdash A\{x := e\}}$	
$(\forall^2$ -intro,elim)	$\frac{\Gamma \vdash A}{\Gamma \vdash \forall X A} \text{ if } X \notin FV(\Gamma) \qquad \frac{\Gamma \vdash \forall X A}{\Gamma \vdash A\{X := P\}}$	
(Peirce's law)	$\overline{\Gamma \vdash ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}$	

System NK2 contains the usual rules of intuitionistic 2nd-order logic (NJ2), plus Peirce's law, for classical reasoning

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classic
00000000	000000000000000000	0000000000	0000

Classical realizability

Derivations

• Deduction rules are the elementary bricks of reasoning. They can be assembled to form derivations (finite sequent-labelled trees)

Example: derivation of the syllogism Barbara $\frac{\overline{\Gamma_{3} \vdash \forall x (Q(x) \Rightarrow R(x))}}{\Gamma_{3} \vdash Q(x) \Rightarrow R(x)} \xrightarrow[(v^{1}-elim)]{(v^{1}-elim)}} \frac{\overline{\Gamma_{3} \vdash \forall x (P(x) \Rightarrow Q(x))}}{\Gamma_{3} \vdash P(x) \Rightarrow Q(x)} \xrightarrow[(v^{1}-elim)]{(v^{1}-elim)}} \frac{\Gamma_{3} \vdash P(x)}{\Gamma_{3} \vdash P(x)} \xrightarrow[(\Rightarrow -elim)]{(x^{1}-elim)}} \xrightarrow[(\Rightarrow -elim)]{(x^{1}-elim)} \frac{\overline{\Gamma_{3} \vdash R(x)}}{\Gamma_{2} \vdash P(x) \Rightarrow R(x)} \xrightarrow[(v^{1}-intro)]{(v^{1}-intro)}} \frac{\Gamma_{1} \vdash \forall x (Q(x) \Rightarrow R(x)) \Rightarrow \forall x (P(x) \Rightarrow R(x))}{(x^{1} \vdash \forall x (P(x) \Rightarrow Q(x))) \Rightarrow \forall x (Q(x) \Rightarrow R(x))} \xrightarrow[(\Rightarrow -intro)]{(x^{1}-intro)}} \xrightarrow[(\Rightarrow -intro)]{(x^{1}-intro)} \xrightarrow[(x^{2}-intro)]{(x^{2}-intro)}} \xrightarrow[(x^{2}-intro)]{(x^{2}-intro$

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical re
00000000	000000000000000000	0000000000	000000
_			

Witness extraction
00000000000000000

Derivations

• Deduction rules are the elementary bricks of reasoning. They can be assembled to form derivations (finite sequent-labelled trees)

Example: derivation of the syllogism Barbara $\frac{\overline{\Gamma_{3} \vdash \forall x (Q(x) \Rightarrow R(x))}}{\Gamma_{3} \vdash Q(x) \Rightarrow R(x)} \stackrel{(axiom)}{(\forall^{1} \text{-elim})} \frac{\overline{\Gamma_{3} \vdash \forall x (P(x) \Rightarrow Q(x))}}{\Gamma_{3} \vdash P(x) \Rightarrow Q(x)} \stackrel{(axiom)}{(\forall^{1} \text{-elim})} \frac{(axiom)}{\Gamma_{3} \vdash P(x)} \stackrel{(axiom)}{(\Rightarrow \text{-elim})} \stackrel{(axiom)}{(\Rightarrow \text{-elim})} \frac{(axiom)}{(\Rightarrow \text{-elim})} \frac{\Gamma_{3} \vdash Q(x)}{\Gamma_{2} \vdash P(x) \Rightarrow R(x)} \stackrel{(\Rightarrow \text{-intro})}{(\Rightarrow \text{-elim})} \stackrel{(\Rightarrow \text{-elim})}{(\Rightarrow \text{-elim})} \frac{\Gamma_{1} \vdash \forall x (Q(x) \Rightarrow R(x)) \Rightarrow \forall x (P(x) \Rightarrow R(x))}{(\forall^{1} \text{-intro})} \stackrel{(\Rightarrow \text{-intro})}{(\Rightarrow \text{-intro})} \stackrel{(\Rightarrow \text{-intro})}{(\Rightarrow \text{-intro})} \frac{(\Rightarrow \text{-intro})}{(\Rightarrow \text{-intro})} \frac{(\Rightarrow \text{-intro})}{(\Rightarrow \text{-intro})} \frac{(\Rightarrow \text{-intro})}{(\Rightarrow \text{-intro})} \stackrel{(\Rightarrow \text{-intro})}{(\Rightarrow \text{-intro})} \frac{(\Rightarrow \text{-intro})}{(\Rightarrow \text{-intro})}$

with $\Gamma_1 \equiv \forall x (P(x) \Rightarrow Q(x)), \quad \Gamma_2 \equiv \Gamma_1, \forall x (Q(x) \Rightarrow R(x)), \quad \Gamma_3 \equiv \Gamma_2, P(x)$

- A sequent Γ ⊢ A is derivable when it appears as the conclusion of a derivation. A formula A is derivable when the sequent ⊢ A is
- Remark: One also uses proof/provable for derivation/derivable

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	00000000000	0000000000000000000	000000000000000000000000000000000000000
Express	siveness			

The 8 deduction rules of system NK2 allow us to derive the usual rules of logic (for all connectives & quantifiers):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	00000000000	0000000000000000000	000000000000000000000000000000000000000
Expres	siveness			

The 8 deduction rules of system NK2 allow us to derive the usual rules of logic (for all connectives & quantifiers):

• Introduction/elimination rules for defined connectives/quantifiers:

 $\begin{array}{ll} \bot \Rightarrow A, & A \Rightarrow B \Rightarrow A \land B, & A \land B \Rightarrow A, & A \land B \Rightarrow B, \\ A \Rightarrow A \lor B, & B \Rightarrow A \lor B, & (A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow A \lor B \Rightarrow C, \\ A(e) \Rightarrow \exists x A(x), & \forall x (A(x) \Rightarrow C) \Rightarrow \exists x A(x) \Rightarrow C, \\ A(P) \Rightarrow \exists X A(X), & \forall X (A(X) \Rightarrow C) \Rightarrow \exists X A(X) \Rightarrow C, \\ e = e, & e_1 = e_2 \Rightarrow e_2 = e_1, & e_1 = e_2 \Rightarrow e_2 = e_3 \Rightarrow e_1 = e_3, & \text{etc.} \end{array}$

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	00000000000	0000000000000000000	000000000000000000000000000000000000000
Express	siveness			

The 8 deduction rules of system NK2 allow us to derive the usual rules of logic (for all connectives & quantifiers):

• Introduction/elimination rules for defined connectives/quantifiers:

 $\begin{array}{ccc} \bot \Rightarrow A, & A \Rightarrow B \Rightarrow A \land B, & A \land B \Rightarrow A, & A \land B \Rightarrow B, \\ A \Rightarrow A \lor B, & B \Rightarrow A \lor B, & (A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow A \lor B \Rightarrow C, \\ A(e) \Rightarrow \exists x A(x), & \forall x (A(x) \Rightarrow C) \Rightarrow \exists x A(x) \Rightarrow C, \\ A(P) \Rightarrow \exists X A(X), & \forall X (A(X) \Rightarrow C) \Rightarrow \exists X A(X) \Rightarrow C, \\ e = e, & e_1 = e_2 \Rightarrow e_2 = e_1, & e_1 = e_2 \Rightarrow e_2 = e_3 \Rightarrow e_1 = e_3, & \text{etc.} \end{array}$

• Classical reasoning + De Morgan laws:

 $A \lor \neg A$ $\neg \neg A \Leftrightarrow A \qquad \neg (A \land B) \Leftrightarrow \neg A \lor \neg B$ $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A) \qquad \neg \forall x A(x) \Leftrightarrow \exists x \neg A(x)$

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability 00000000000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Axioms of classical 2nd-order arithmetic (PA2)

 We have defined (classical) 2nd-order logic (NK2) To get 2nd-order arithmetic (PA2), we add the following axioms:

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

Axioms of classical 2nd-order arithmetic (PA2)

- We have defined (classical) 2nd-order logic (NK2) To get 2nd-order arithmetic (PA2), we add the following axioms:
- Defining axioms of primitive recursive function symbols:

$$\begin{aligned} &\forall x (x + 0 = x) & \forall x (x \times 0 = 0) \\ &\forall x \forall y (x + s(y) = s(x + y)) & \forall x \forall y (x \times s(y) = x \times y + x) \\ &\forall x (x - 0 = x) \\ &\forall y (0 - y = 0) & \text{etc.} \\ &\forall x \forall y (s(x) - s(y) = x - y) \end{aligned}$$

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

Axioms of classical 2nd-order arithmetic (PA2)

- We have defined (classical) 2nd-order logic (NK2) To get 2nd-order arithmetic (PA2), we add the following axioms:
- Defining axioms of primitive recursive function symbols:

$$\begin{aligned} \forall x (x + 0 = x) & \forall x (x \times 0 = 0) \\ \forall x \forall y (x + s(y) = s(x + y)) & \forall x \forall y (x \times s(y) = x \times y + x) \\ \forall x (x - 0 = x) \\ \forall y (0 - y = 0) & \text{etc.} \\ \forall x \forall y (s(x) - s(y) = x - y) \end{aligned}$$

Peano axioms:

 $\forall x \neg (s(x) = 0) \qquad \qquad \forall x \forall y (s(x) = s(y) \Rightarrow x = y)$

 Extracted programs

Classical realizability

Axioms of classical 2nd-order arithmetic (PA2)

- We have defined (classical) 2nd-order logic (NK2) To get 2nd-order arithmetic (PA2), we add the following axioms:
- Defining axioms of primitive recursive function symbols:

$$\begin{aligned} \forall x (x + 0 = x) & \forall x (x \times 0 = 0) \\ \forall x \forall y (x + s(y) = s(x + y)) & \forall x \forall y (x \times s(y) = x \times y + x) \\ \forall x (x - 0 = x) \\ \forall y (0 - y = 0) & \text{etc.} \\ \forall x \forall y (s(x) - s(y) = x - y) \end{aligned}$$

Peano axioms:

- $\forall x \neg (s(x) = 0) \qquad \forall x \forall y (s(x) = s(y) \Rightarrow x = y)$
- Technically, these axioms are aggregated to the deduction system as new inference rules of the form

$$\Gamma \vdash \forall x (x + 0 = x)$$
 (etc.)

2nd-order arithmetic (PA2) 0000000000000000000 Extracted programs

Witness extraction

The problem of induction

• The above presentation of PA2 contains no induction axiom

2nd-order arithmetic (PA2) 0000000000000000000 Extracted programs

Classical realizability

- 日本 - 1 日本 - 日本 - 日本

The problem of induction

(1/2)

- The above presentation of PA2 contains no induction axiom
- The reason is that the property of being a natural number is definable in 2nd-order logic, via the set/predicate:

$$\mathbf{N} \equiv \{x : \forall Z (Z(0) \Rightarrow \forall y (Z(y) \Rightarrow Z(s(y))) \Rightarrow Z(x))\}$$

2nd-order arithmetic (PA2) 0000000000000000000

The problem of induction

Extracted programs

Classical realizability

Witness extraction

(1/2)

- The above presentation of PA2 contains no induction axiom
- The reason is that the property of being a natural number is definable in 2nd-order logic, via the set/predicate:

$$\mathbf{N} \equiv \{x : \forall Z(Z(0) \Rightarrow \forall y(Z(y) \Rightarrow Z(s(y))) \Rightarrow Z(x))\}$$

• So we can replace 1st-order quantifications by their versions relativized to **N** (arithmetic quantifications):

$$\begin{array}{rcl} (\forall x \in \mathbf{N}) \ A(x) &\equiv & \forall x \ (x \in \mathbf{N} \Rightarrow A(x)) \\ (\exists x \in \mathbf{N}) \ A(x) &\equiv & \forall Z \ ((\forall x \in \mathbf{N}) \ (A(x) \Rightarrow Z) \Rightarrow Z) \\ &\Leftrightarrow & \exists x \ (x \in \mathbf{N} \ \land \ A(x)) \end{array}$$

2nd-order arithmetic (PA2) 000000000000000 Extracted programs

Classical realizability

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The problem of induction

(2/2)

• Through this process of relativization, induction is derivable:

Relativized principle of induction

 $\forall Z (Z(0) \Rightarrow (\forall x \in \mathbf{N}) (Z(x) \Rightarrow Z(s(x))) \Rightarrow (\forall x \in \mathbf{N}) Z(x))$

• Through this process of relativization, induction is derivable:

Relativized principle of induction

 $\forall Z (Z(0) \Rightarrow (\forall x \in \mathbf{N}) (Z(x) \Rightarrow Z(s(x))) \Rightarrow (\forall x \in \mathbf{N}) Z(x))$

- In practice, one works with relativized quantification the same way as with unrelativized ones
- However, we need to check that the set/predicate ${\bm N}$ is closed under all the operations of the signature Σ :

Proposition (Totality of arithmetic expressions)

For each arithmetic expression $e(x_1, \ldots, x_k)$, the formula

$$\mathsf{Total}(e) \;\; \equiv \;\; (orall x_1, \dots, x_k \in \mathsf{N}) \; e(x_1, \dots, x_k) \in \mathsf{N}$$

is derivable in system NK2 (without an axiom)

Introduction
00000000

2nd-order arithmetic (PA2)

Extracted programs •0000000000 Classical realizability 00000000000000000 Witness extraction

Plan

- 2 Second-order arithmetic (PA2)
- 3 Extracted programs
- 4 The classical realizability interpretation

5 Witness extraction

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	0000000000000000000	000000000000000000000000000000000000000
The λ_c	-calculus			

Terms, stacks and processes									
Terms	t, u	::=	x	$\lambda x . t$		tu		œ	stop k_{π}
Stacks	π,π'	::=	♦	$t\cdot\pi$					(t closed)
Processes	p,q	::=	$t\star\pi$						(t closed)

- A λ -calculus with two kinds of constants:
 - Instructions œ (call/cc) and stop
 - Continuation constants k_{π} , one for every stack π (generated by ∞)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	0000000000000000000	000000000000000000000000000000000000000
The λ_c	-calculus			

Terms, stacks and processes								
Terms	t, u	::=	x	λx.t		tu	œ	stop $\mid k_{\pi}$
Stacks	π,π'	::=	♦	$t\cdot\pi$				(t closed)
Processes	p,q	::=	$t\star\pi$					(t closed)

- A λ -calculus with two kinds of constants:
 - Instructions œ (call/cc) and stop
 - Continuation constants k_{π} , one for every stack π (generated by α)

Notations:

 $\begin{array}{rcl} \Lambda & = & \text{set of closed } \lambda_c\text{-terms} \\ \Pi & = & \text{set of stacks (closed)} \\ \Lambda \star \Pi & = & \text{set of processes (closed)} \end{array}$

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

(1/2)

The Krivine Abstract Machine (KAM)

 The set of processes (Λ ★ Π) is equipped with a preorder of evaluation p ≻ p', that is generated from the following rules:

Krivine Abstract Machine (KAM)							
Push	$tu \star \pi$	\succ	$t \star u \cdot \pi$				
Grab	$\lambda x . t \star u \cdot \pi$	\succ	$t\{x := u\} \star \pi$				
Save	$\mathbf{c} \star \mathbf{u} \cdot \pi$	\succ	$u \star k_{\pi} \cdot \pi$				
Restore	$k_\pi \star u\cdot\pi'$	\succ	$u \star \pi$				

(+ reflexivity & transitivity)

• Extensible machinery: can add extra instructions and rules

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Krivine Abstract Machine (KAM)

(2/2)

• Rules **Push** and **Grab** implement weak head β -reduction:

Push Grab	λ×	$tu \star \pi$		$\begin{array}{l}t \star u \cdot \pi\\ \vdots u\} \star \pi\end{array}$
	• Example:	(λxy.t)	υν * π	$\lambda xy \cdot t \star u \cdot v \cdot \pi$ $t\{x := u\}\{y := v\} \star \pi$

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

(2/2)

The Krivine Abstract Machine (KAM)

• Rules **Push** and **Grab** implement weak head β -reduction:

Push Grab		$tu \star \pi$ $\lambda x . t \star u \cdot \pi$		$t\{x :=$	$\begin{array}{l}t \star u \cdot \pi\\ = u\} \star \pi\end{array}$
	• Example:	(λxy.t)	uv*		$\lambda xy \cdot t \star u \cdot v \cdot \pi$ $t\{x := u\}\{y := v\} \star \pi$

• Rules Save and Restore implement backtracking:

Save	$\mathbf{c} \star \mathbf{u} \cdot \pi$	\succ	$u \star k_{\pi} \cdot \pi$
Restore	$k_\pi \star \mathit{u} \cdot \pi'$	\succ	$u \star \pi$

• Instruction $\boldsymbol{\alpha}$ most often used in the pattern

$$\begin{array}{rcl} \mathfrak{cc} (\lambda k \, . \, t) \star \pi &\succ & \mathfrak{cc} \star (\lambda k \, . \, t) \star \pi \\ &\succ & (\lambda k \, . \, t) \star \mathsf{k}_{\pi} \cdot \pi \\ &\succ & t\{k := \mathsf{k}_{\pi}\} \star \pi \end{array}$$

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

The Krivine Abstract Machine (KAM)

• Rules **Push** and **Grab** implement weak head β -reduction:

Push Grab		$tu \star \pi$ $\lambda x . t \star u \cdot \pi$	\succ	$\begin{array}{l}t \star u \cdot \pi\\u\} \star \pi\end{array}$
_	• Example:	(λxy.t)	uv*	$\lambda xy \cdot t \star u \cdot v \cdot \pi$ $t\{x := u\}\{y := v\} \star \pi$

• Rules Save and Restore implement backtracking:

Save	$\mathbf{c} \star \mathbf{u} \cdot \boldsymbol{\pi}$	\succ	$u \star k_{\pi} \cdot \pi$
Restore	$k_\pi \star \mathit{u} \cdot \pi'$	\succ	$u \star \pi$

 $\bullet\,$ Instruction $\varpi\,$ most often used in the pattern

$$\begin{array}{rcl} \mathfrak{cc} (\lambda k \, . \, t) \star \pi &\succ & \mathfrak{cc} \star (\lambda k \, . \, t) \cdot \pi \\ &\succ & (\lambda k \, . \, t) \star \mathsf{k}_{\pi} \cdot \pi \\ &\succ & t\{k := \mathsf{k}_{\pi}\} \star \pi \end{array}$$

• Instruction stop has no evaluation rule: stop $\star \pi \not\succ$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 - 釣んの

Extracted programs

Witness extraction

A type system for 2nd-order logic: λ NK2

(1/2)

- Aim: Turning the deduction system NK2 into a type system written λ NK2, where:
 - Formulas are used as types
 - The computational contents of proofs is given by λ_c -terms

Extracted programs

A type system for 2nd-order logic: λ NK2

- **Aim:** Turning the deduction system NK2 into a type system written λ NK2, where:
 - Formulas are used as types
 - The computational contents of proofs is given by λ_c -terms
- Typing judgments of the form

$$\underbrace{\mathbf{x_1}:A_1,\ldots,\mathbf{x_n}:A_n}_{\mathbf{t}}\vdash \mathbf{t}:A$$

typing context [

= sequent decorated with computational information

Extracted programs

Classical realizability

A type system for 2nd-order logic: λ NK2

- Aim: Turning the deduction system NK2 into a type system written λ NK2, where:
 - Formulas are used as types
 - The computational contents of proofs is given by λ_c -terms
- Typing judgments of the form

$$\underbrace{\mathbf{x_1}: A_1, \dots, \mathbf{x_n}: A_n}_{\text{typing context } \Gamma} \vdash t: A$$

= sequent decorated with computational information

• Note: We only use proof-like terms, that is: λ_c -terms without continuation constants (k_{π}) and without the instruction stop

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

(2/2)

A type system for 2nd-order logic: λ NK2

Typing rules of system
$$\lambda NK2$$

$$\overline{\Gamma \vdash x : A} \quad \text{if } (x:A) \in \Gamma$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \Rightarrow B} \qquad \frac{\Gamma \vdash t : A \Rightarrow B}{\Gamma \vdash t u : B}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x A} \quad \text{if } x \notin FV(\Gamma) \qquad \frac{\Gamma \vdash t : \forall x A}{\Gamma \vdash t : A\{x := e\}}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall X A} \quad \text{if } x \notin FV(\Gamma) \qquad \frac{\Gamma \vdash t : \forall X A}{\Gamma \vdash t : A\{x := P\}}$$

$$\overline{\Gamma \vdash t : A\{x := P\}}$$

$$\overline{\Gamma \vdash \mathbf{c} : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}$$

Ty

Extracted programs

Classical realizability

(2/2)

A type system for 2nd-order logic: λ NK2

$$\overline{\Gamma \vdash x : A} \quad \text{if } (x:A) \in \Gamma$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \Rightarrow B} \qquad \frac{\Gamma \vdash t : A \Rightarrow B}{\Gamma \vdash t : B} \qquad \frac{\Gamma \vdash t : A \Rightarrow B}{\Gamma \vdash t : B}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x A} \quad \text{if } x \notin FV(\Gamma) \qquad \frac{\Gamma \vdash t : \forall x A}{\Gamma \vdash t : A\{x := e\}}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall X A} \quad \text{if } x \notin FV(\Gamma) \qquad \frac{\Gamma \vdash t : \forall X A}{\Gamma \vdash t : A\{x := P\}}$$

$$\overline{\Gamma \vdash c} : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$$

• Remarks:

- ∀ interpreted uniformly (intersection type)
- typing derivations defined the same way as logical derivations
- type checking/inference undecidable

d-order arithmetic (PA2)

Extracted programs

Classical realizability

Relation between deduction (NK2) and typing (λ NK2)

- Each typing context Γ ≡ x₁ : A₁,..., x_n : A_n can be turned into a logical context Γ* ≡ A₁,..., A_n
- Each typing judgment Γ ⊢ t : A can be turned into a sequent:
 (Γ ⊢ t : A)* ≡ Γ* ⊢ A
- Each typing derivation d is turned into a logical derivation d^*

Extracted programs

Classical realizability 00000000000000000

Relation between deduction (NK2) and typing (λ NK2)

- Each typing context Γ ≡ x₁ : A₁,..., x_n : A_n can be turned into a logical context Γ* ≡ A₁,..., A_n
- Each typing judgment $\Gamma \vdash t$: A can be turned into a sequent:

$$(\Gamma \vdash \mathbf{t} : A)^* \equiv \Gamma^* \vdash A$$

• Each typing derivation d is turned into a logical derivation d^*

Equivalence between systems NK2 and $\lambda \rm NK2$

Extracted programs

Classical realizability 00000000000000000

Relation between deduction (NK2) and typing (λ NK2)

- Each typing context Γ ≡ x₁ : A₁,..., x_n : A_n can be turned into a logical context Γ* ≡ A₁,..., A_n
- Each typing judgment $\Gamma \vdash t$: A can be turned into a sequent:

$$(\Gamma \vdash \mathbf{t} : A)^* \equiv \Gamma^* \vdash A$$

• Each typing derivation d is turned into a logical derivation d^*

Equivalence between systems NK2 and $\lambda \rm NK2$

If d is a typing derivation of Γ ⊢ t : A in system λNK2, then d* is a logical derivation of Γ* ⊢ A in system NK2

Extracted programs

Classical realizability

Relation between deduction (NK2) and typing (λ NK2)

- Each typing context Γ ≡ x₁ : A₁,..., x_n : A_n can be turned into a logical context Γ* ≡ A₁,..., A_n
- Each typing judgment $\Gamma \vdash t$: A can be turned into a sequent:

$$(\Gamma \vdash \mathbf{t} : A)^* \equiv \Gamma^* \vdash A$$

• Each typing derivation d is turned into a logical derivation d^*

Equivalence between systems NK2 and λ NK2

- If d is a typing derivation of Γ ⊢ t : A in system λNK2, then d* is a logical derivation of Γ* ⊢ A in system NK2
- Every logical derivation d of a sequent Γ ⊢ A in system NK2 comes from a typing derivation d₀ of a judgment of the form Γ₀ ⊢ t : A in system λNK2 (with Γ₀^{*} ≡ Γ and d₀^{*} ≡ d)

Extracted programs

Classical realizability 00000000000000000

Relation between deduction (NK2) and typing (λ NK2)

- Each typing context Γ ≡ x₁ : A₁,..., x_n : A_n can be turned into a logical context Γ* ≡ A₁,..., A_n
- Each typing judgment $\Gamma \vdash t$: A can be turned into a sequent:

$$(\Gamma \vdash t : A)^* \equiv \Gamma^* \vdash A$$

• Each typing derivation d is turned into a logical derivation d^*

Equivalence between systems NK2 and λ NK2

- If d is a typing derivation of Γ ⊢ t : A in system λNK2, then d* is a logical derivation of Γ* ⊢ A in system NK2
- ② Every logical derivation d of a sequent Γ ⊢ A in system NK2 comes from a typing derivation d₀ of a judgment of the form Γ₀ ⊢ t : A in system λNK2 (with Γ₀ ≡ Γ and d₀ ≡ d)

The typing derivation d_0 is unique, up to the names of variables

The term t is called the program extracted from the derivation d

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction
00000000000000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Example: extracting a program from a proof

Example: derivation of the syllogism Barbara

$$\begin{array}{c} \overline{\Gamma_{3} \vdash \forall x \left(Q(x) \Rightarrow R(x) \right)} & (\text{axiom}) \\ \hline \overline{\Gamma_{3} \vdash Q(x) \Rightarrow R(x)} & (\text{axiom}) \\ \hline \overline{\Gamma_{3} \vdash Q(x) \Rightarrow R(x)} & (\text{axiom}) \\ \hline \overline{\Gamma_{3} \vdash Q(x)} & (y^{1} \text{-elim}) & \overline{\Gamma_{3} \vdash P(x)} \\ \hline \overline{\Gamma_{3} \vdash Q(x)} & (\Rightarrow \text{-elim}) \\ \hline \hline \overline{\Gamma_{3} \vdash P(x) \Rightarrow R(x)} & (\Rightarrow \text{-elim}) \\ \hline \hline \overline{\Gamma_{2} \vdash P(x) \Rightarrow R(x)} & (\Rightarrow \text{-intro}) \\ \hline \overline{\Gamma_{2} \vdash \forall x \left(P(x) \Rightarrow R(x) \right)} & (\forall^{1} \text{-intro}) \\ \hline \overline{\Gamma_{1} \vdash \forall x \left(Q(x) \Rightarrow R(x) \right) \Rightarrow \forall x \left(P(x) \Rightarrow R(x) \right)} & (\Rightarrow \text{-intro}) \\ \hline \overline{\Gamma_{1} \vdash \forall x \left(Q(x) \Rightarrow R(x) \right) \Rightarrow \forall x \left(P(x) \Rightarrow R(x) \right)} & (\Rightarrow \text{-intro}) \\ \hline \overline{\Gamma_{2} \vdash \forall x \left(P(x) \Rightarrow Q(x) \right) \Rightarrow \forall x \left(Q(x) \Rightarrow R(x) \right) \Rightarrow \forall x \left(P(x) \Rightarrow R(x) \right)} & (\Rightarrow \text{-intro}) \\ \hline \end{array}$$

with $\Gamma_1 \equiv \forall x (P(x) \Rightarrow Q(x)), \quad \Gamma_2 \equiv \Gamma_1, \forall x (Q(x) \Rightarrow R(x)), \quad \Gamma_3 \equiv \Gamma_2, P(x)$

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability 00000000000000000 Witness extraction

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example: extracting a program from a proof

Example: typing derivation of the syllogism Barbara

$$\frac{\overline{\Gamma_{3} \vdash g : \forall x (Q(x) \Rightarrow R(x))}}{\Gamma_{3} \vdash g : Q(x) \Rightarrow R(x)} \xrightarrow{\overline{\Gamma_{3} \vdash f : \forall x (P(x) \Rightarrow Q(x))}}{\Gamma_{3} \vdash f : P(x) \Rightarrow Q(x)} \overline{\Gamma_{3} \vdash z : P(x)}$$

$$\frac{\overline{\Gamma_{3} \vdash g : Q(x) \Rightarrow R(x)}}{\overline{\Gamma_{2} \vdash \lambda z . g (f z) : R(x)}}$$

$$\overline{\Gamma_{2} \vdash \lambda z . g (f z) : \forall x (P(x) \Rightarrow R(x))}$$

$$\overline{\Gamma_{1} \vdash \lambda g . \lambda z . g (f z) : \forall x (Q(x) \Rightarrow R(x)) \Rightarrow \forall x (P(x) \Rightarrow R(x))}$$

$$\vdash \lambda f . \lambda g . \lambda z . g (f z) : \forall x (P(x) \Rightarrow Q(x)) \Rightarrow \forall x (Q(x) \Rightarrow R(x)) \Rightarrow \forall x (P(x) \Rightarrow R(x))$$

with $\Gamma_1 \equiv \mathbf{f} : \forall x (P(x) \Rightarrow Q(x)), \quad \Gamma_2 \equiv \Gamma_1, \mathbf{g} : \forall x (Q(x) \Rightarrow R(x)), \quad \Gamma_3 \equiv \Gamma_2, \mathbf{z} : P(x)$

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example: extracting a program from a proof

Example: typing derivation of the syllogism Barbara

$$\frac{\overline{\Gamma_{3} \vdash g : \forall x (Q(x) \Rightarrow R(x))}}{\Gamma_{3} \vdash g : Q(x) \Rightarrow R(x)} \xrightarrow{\overline{\Gamma_{3} \vdash f : \forall x (P(x) \Rightarrow Q(x))}}{\Gamma_{3} \vdash f : P(x) \Rightarrow Q(x)} \xrightarrow{\overline{\Gamma_{3} \vdash z : P(x)}}{\Gamma_{3} \vdash z : Q(x)}$$

$$\frac{\overline{\Gamma_{3} \vdash g : Q(x) \Rightarrow R(x)}}{\overline{\Gamma_{2} \vdash \lambda z . g (f z) : P(x) \Rightarrow R(x)}}$$

$$\overline{\Gamma_{2} \vdash \lambda z . g (f z) : \forall x (P(x) \Rightarrow R(x))}$$

$$\overline{\Gamma_{1} \vdash \lambda g . \lambda z . g (f z) : \forall x (Q(x) \Rightarrow R(x)) \Rightarrow \forall x (P(x) \Rightarrow R(x))}$$

$$\vdash \lambda f . \lambda g . \lambda z . g (f z) : \forall x (P(x) \Rightarrow Q(x)) \Rightarrow \forall x (Q(x) \Rightarrow R(x)) \Rightarrow \forall x (P(x) \Rightarrow R(x))$$
with $\Gamma_{1} \equiv f : \forall x (P(x) \Rightarrow Q(x)), \quad \Gamma_{2} \equiv \Gamma_{1}, g : \forall x (Q(x) \Rightarrow R(x)), \quad \Gamma_{3} \equiv \Gamma_{2}, z : P(x)$

• Extracted program is: $\lambda f \cdot \lambda g \cdot \lambda z \cdot f(g z)$ (composition of functions)

 Pairing construct and projections associated to conjunction A \wedge B (= Cartesian product):

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Pairing construct and projections associated to conjunction A \wedge B (= Cartesian product):
- Injections associated to disjunction $A \lor B$ (= direct sum):

$$\begin{array}{rcl} \text{left} &\equiv& \lambda x fg \,.\, fx &:& \forall X \,\forall Y \, (X \Rightarrow X \lor Y) \\ \text{right} &\equiv& \lambda y fg \,.\, gy &:& \forall X \,\forall Y \, (Y \Rightarrow X \lor Y) \end{array}$$

- Pairing construct and projections associated to conjunction A \wedge B (= Cartesian product):
- Injections associated to disjunction $A \lor B$ (= direct sum):

$$\begin{array}{rcl} \text{left} & \equiv & \lambda x \textit{fg} . \textit{f} x & : & \forall X \forall Y (X \Rightarrow X \lor Y) \\ \text{right} & \equiv & \lambda y \textit{fg} . \textit{g} y & : & \forall X \forall Y (Y \Rightarrow X \lor Y) \end{array}$$

• Reflexivity, symmetry and transitivity of equality:

 $\begin{array}{rcl} \mathbf{eq_refl} &\equiv& \lambda z \cdot z &:& \forall x \, (x=x) \\ \mathbf{eq_sym} &\equiv& \lambda z \cdot z \, (\lambda u \cdot u) &:& \forall x \, \forall y \, (x=y \Rightarrow y=x) \\ \mathbf{eq_trans} &\equiv& \lambda xyz \cdot y \, (x \, z) &:& \forall x \, \forall y \, \forall z \, (x=y \Rightarrow y=z \Rightarrow x=z) \end{array}$

$$\begin{array}{rcl} \mathbf{left} &\equiv& \lambda x fg \,.\, f \,x &:& \forall X \,\forall Y \, (X \Rightarrow X \lor Y) \\ \mathbf{right} &\equiv& \lambda y fg \,.\, g \,y &:& \forall X \,\forall Y \, (Y \Rightarrow X \lor Y) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Computational contents of the law of excluded middle?

$$\mathsf{EM} \equiv \qquad \qquad : \quad \forall X \left(X \lor \neg X \right)$$

$$\begin{array}{rcl} \text{left} & \equiv & \lambda x fg \, . \, f \, x & : & \forall X \, \forall Y \, (X \Rightarrow X \lor Y) \\ \text{right} & \equiv & \lambda y fg \, . \, g \, y & : & \forall X \, \forall Y \, (Y \Rightarrow X \lor Y) \end{array}$$

• Computational contents of the law of excluded middle:

$$\mathbf{EM} \equiv \mathbf{c} \left(\lambda k . \mathbf{right} \left(\lambda x . k \left(\mathbf{left} x \right) \right) \right) : \forall X \left(X \lor \neg X \right)$$

$$\begin{array}{rcl} \text{left} & \equiv & \lambda x fg \, . \, f \, x & : & \forall X \, \forall Y \, (X \Rightarrow X \lor Y) \\ \text{right} & \equiv & \lambda y fg \, . \, g \, y & : & \forall X \, \forall Y \, (Y \Rightarrow X \lor Y) \end{array}$$

• Computational contents of the law of excluded middle:

$$\mathsf{EM} \equiv \mathsf{cc} \left(\lambda k \, . \, \mathsf{right} \left(\lambda x \, . \, k \, (\mathsf{left} \, x) \right) \right) \quad : \quad \forall X \, (X \lor \neg X)$$

• Double-negation elimination & De Morgan laws:

$$\begin{array}{rcl} \lambda z . \mathfrak{c} (\lambda k . z \, k) & : & \forall X (\neg \neg X \Rightarrow X) \\ \lambda z y . z (\lambda x . y x) & : & \exists x \, A(x) \Rightarrow \, \neg \forall x \, \neg A(x) \\ \lambda z y . \mathfrak{c} (\lambda k . z (\lambda x . k (y \, x))) & : & \neg \forall x \, \neg A(x) \Rightarrow \, \exists x \, A(x) \end{array}$$

- 日本 - 1 日本 - 日本 - 日本

 Introduction
 2nd-order arithmetic (PA2)
 Extracted programs
 Classical realizability
 Witness extraction

 000000000
 00000000000
 00000000000
 000000000000
 0000000000000

Representing natural numbers

• Encoding zero and successor:

$$\overline{\mathbf{0}} \equiv \lambda z f \cdot z \qquad : \quad \mathbf{0} \in \mathbf{N} \\ \overline{s} \equiv \lambda n z f \cdot f (n z f) \qquad : \quad (\forall x \in \mathbf{N}) s(x) \in \mathbf{N}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Representing natural numbers

• Encoding zero and successor:

$$\overline{\mathbf{0}} \equiv \lambda z f \cdot z \qquad : \quad \mathbf{0} \in \mathbf{N} \\ \overline{s} \equiv \lambda n z f \cdot f (n z f) \qquad : \quad (\forall x \in \mathbf{N}) \, s(x) \in \mathbf{N}$$

• Each natural number $n \in \mathbb{N}$ is thus represented by the program

$$\overline{n} \equiv \overline{s}^n \overline{0} \equiv \underbrace{\overline{s}(\cdots(\overline{s}\ \overline{0})\cdots)}_n : n \in \mathbf{N}$$

(= Krivine numeral n)

Representing natural numbers

• Encoding zero and successor:

$$\overline{\mathbf{0}} \equiv \lambda z f \cdot z \qquad : \quad \mathbf{0} \in \mathbf{N} \\ \overline{s} \equiv \lambda n z f \cdot f (n z f) \qquad : \quad (\forall x \in \mathbf{N}) s(x) \in \mathbf{N}$$

• Each natural number $n \in \mathbb{N}$ is thus represented by the program

$$\overline{n} \equiv \overline{s}^n \overline{0} \equiv \underbrace{\overline{s}(\cdots(\overline{s}\ \overline{0})\cdots)}_n : n \in \mathbf{N}$$

(= Krivine numeral n)

• Intuitively, the program \overline{n} behaves as an iterator:

$$\frac{\overline{0} \star u_0 \cdot u_1 \cdot \pi \quad \succ \quad u_0 \star \pi }{\overline{n+1} \star u_0 \cdot u_1 \cdot \pi \quad \succ \quad u_1 \star (\overline{n} \, u_0 \, u_1) \cdot \pi }$$

Introduction
00000000

2nd-order arithmetic (PA2)

Extracted programs

Plan

- 2 Second-order arithmetic (PA2)
- 3 Extracted programs
- 4 The classical realizability interpretation

Witness extraction

ふつう 山田 ふぼう ふぼう ふロッ

Classical realizability: principles

Intuitions:

- term = "proof" / stack = "counter-proof"
- process = "contradiction"

(slogan: never trust a classical realizer!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	00000000000	0000000000000000000	000000000000000000000000000000000000000
<u> </u>				

Classical realizability: principles

- Intuitions:
 - term = "proof" / stack = "counter-proof"

• process = "contradiction" (slogan: never trust a classical realizer!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Classical realizability model parameterized by a pole \perp
 - = set of processes closed under anti-evaluation

Classical realizability: principles

• Intuitions:

- term = "proof" / stack = "counter-proof"
- process = "contradiction"

(slogan: never trust a classical realizer!)

- $\bullet\,$ Classical realizability model parameterized by a pole $\perp\!\!\!\!\perp$
 - = set of processes closed under anti-evaluation
- Each formula A is interpreted as two sets:
 - A set of stacks ||A|| (falsity value)
 - A set of terms |A| (truth value)

Classical realizability: principles

• Intuitions:

- term = "proof" / stack = "counter-proof"
- process = "contradiction"

(slogan: never trust a classical realizer!)

- $\bullet\,$ Classical realizability model parameterized by a pole $\perp\!\!\!\!\perp$
 - = set of processes closed under anti-evaluation
- Each formula A is interpreted as two sets:
 - A set of stacks ||A|| (falsity value)
 - A set of terms |A| (truth value)
- Falsity value ||A|| defined by induction on A (negative interpretation)
- Truth value |A| defined by orthogonality:

$$|A| = ||A||^{\perp} = \{t \in \Lambda : \forall \pi \in ||A|| \quad t \star \pi \in \bot\}$$

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Architecture of the realizability model

- The realizability model \mathcal{M}_{\perp} is defined from:
 - The full standard model *M* of PA2: the ground model (but we could take any model *M* of PA2 as well)
 - A saturated set of processes $\bot\!\!\!\bot \subseteq \Lambda \star \Pi$ (the pole)

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Architecture of the realizability model

- The realizability model \mathcal{M}_{\perp} is defined from:
 - The full standard model *M* of PA2: the ground model (but we could take any model *M* of PA2 as well)
 - A saturated set of processes $\bot\!\!\!\bot \subseteq \Lambda \star \Pi$ (the pole)
- Architecture:
 - First-order terms/variables interpreted as natural numbers $n \in \mathbb{N}$
 - Formulas interpreted as falsity values $S \in \mathfrak{P}(\Pi)$
 - k-ary second-order variables (and k-ary predicates) interpreted as falsity functions F : IN^k → 𝔅(Π).

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Architecture of the realizability model

- The realizability model \mathcal{M}_{\perp} is defined from:
 - The full standard model *M* of PA2: the ground model (but we could take any model *M* of PA2 as well)
 - A saturated set of processes $\bot\!\!\!\bot \subseteq \Lambda \star \Pi$ (the pole)
- Architecture:
 - First-order terms/variables interpreted as natural numbers $n \in \mathbb{N}$
 - Formulas interpreted as falsity values $S \in \mathfrak{P}(\Pi)$
 - k-ary second-order variables (and k-ary predicates) interpreted as falsity functions F : IN^k → 𝔅(Π).

Formulas with parameters $A, B ::= \cdots | \dot{F}(e_1, \dots, e_k)$

Add a predicate constant \dot{F} for every falsity function $F: \mathbb{N}^k \to \mathfrak{P}(\Pi)$

Extracted programs

Classical realizability

(日) (同) (日) (日)

Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

• Falsity value ||A|| defined by induction on A:

$$\begin{aligned} \|\dot{F}(e_1,\ldots,e_k)\| &= F(e_1^{\mathbb{N}},\ldots,e_k^{\mathbb{N}}) \\ \|A\Rightarrow B\| &= |A| \cdot \|B\| &= \{t \cdot \pi : t \in |A|, \ \pi \in \|B\|\} \\ \|\forall x \ A\| &= \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\| \\ \|\forall X \ A\| &= \bigcup_{F:\mathbb{N}^n \to \mathfrak{P}(\Pi)} \|A\{X := \dot{F}\}\| \end{aligned}$$

• Truth value |A| defined by orthogonality:

$$|A| = ||A||^{\perp} = \{t \in \Lambda : \forall \pi \in ||A|| \quad t \star \pi \in \bot\}$$

Extracted programs

Classical realizability

イロト 不得 トイヨト イヨト

э

The realizability relation

Falsity value ||A|| and truth value |A| depend on the pole \bot

 \rightsquigarrow write them (sometimes) $\|A\|_{\mathbb{L}}$ and $|A|_{\mathbb{L}}$ to recall the dependency

Realizability relations				
$t \Vdash A \equiv$	$t\in \mathcal{A} _{\perp\!\!\!\perp}$	(Realizability w.r.t. \bot)		
$t \Vdash A \equiv$	$\forall \bot\!\!\!\bot \ t \in A _{\bot\!\!\!\bot}$	(Universal realizability)		

2nd-order arithmetic (PA2)

xtracted programs

Classical realizability

Witness extraction

From computation to realizability

(1/2)

Fundamental idea: The computational behavior of a term determines the formula(s) it realizes:

Example 1: A closed term *t* is identity-like if:

 $t \star u \cdot \pi \succ u \star \pi$

for all $u \in \Lambda$, $\pi \in \Pi$

Extracted programs

Classical realizability

Witness extraction

From computation to realizability

(1/2)

Fundamental idea: The computational behavior of a term determines the formula(s) it realizes:

Example 1: A closed term *t* is identity-like if:

 $t \star u \cdot \pi \succ u \star \pi$

for all $u \in \Lambda$, $\pi \in \Pi$

Proposition

If t is identity-like, then $t \Vdash \forall X (X \Rightarrow X)$

Proof: Exercise! (Remark: converse implication holds - exercise!)

Extracted programs

Classical realizability

Witness extraction

From computation to realizability

(1/2)

Fundamental idea: The computational behavior of a term determines the formula(s) it realizes:

Example 1: A closed term *t* is identity-like if:

 $t \star u \cdot \pi \succ u \star \pi$

for all $u \in \Lambda$, $\pi \in \Pi$

Proposition

If t is identity-like, then $t \Vdash \forall X (X \Rightarrow X)$

Proof: Exercise! (Remark: converse implication holds - exercise!)

• Examples of identity-like terms:

- $\lambda x . x$, $(\lambda x . x) (\lambda x . x)$, etc.
- $\lambda x \cdot \mathbf{c} (\lambda k \cdot x)$, $\lambda x \cdot \mathbf{c} (\lambda k \cdot k x)$, $\lambda x \cdot \mathbf{c} (\lambda k \cdot k x \omega)$, etc.
- λx . quote $x \lambda n$. unquote $n(\lambda z \cdot z)$

Introduction 00000000 2nd-order arithmetic (PA2)

xtracted programs

Classical realizability

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

From computation to realizability

(2/2)

Example 2: Control operators:

 $\begin{array}{cccc} \mathbf{cc} \star t \cdot \pi &\succ & t \star \mathbf{k}_{\pi} \cdot \pi \\ \mathbf{k}_{\pi} \star t \cdot \pi' &\succ & t \star \pi \end{array}$

oduction 2nd-order arith

2nd-order arithmetic (PA2)

xtracted programs

Classical realizability

Witness extraction

From computation to realizability

(2/2)

Example 2: Control operators:

$$\begin{array}{ccc} \mathbf{cc} \star t \cdot \pi &\succ t \star \mathbf{k}_{\pi} \cdot \pi \\ \mathbf{k}_{\pi} \star t \cdot \pi' &\succ t \star \pi \end{array}$$

• "Typing"
$$k_{\pi}$$
: $k_{\pi} \star t \cdot \pi' \succ t \star \pi$

Le	mma			
lf	$\pi \in \ \mathbf{A}\ $,	then	$k_{\pi}\Vdash A\Rightarrow B$	(B any)
_				

Proof: Exercise

tion 2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

From computation to realizability

Example 2: Control operators:

$$\begin{array}{ccc} \mathbf{cc} \star t \cdot \pi &\succ t \star \mathbf{k}_{\pi} \cdot \pi \\ \mathbf{k}_{\pi} \star t \cdot \pi' &\succ t \star \pi \end{array}$$

• "Typing"
$$k_{\pi}$$
: $k_{\pi} \star t \cdot \pi' \succ t \star \pi$

Lemma If $\pi \in ||A||$, then $k_{\pi} \Vdash A \Rightarrow B$ (*B* any) Proof: Exercise • "Typing" \mathfrak{c} : $\mathfrak{c} \star t \cdot \pi \succ t \star k_{\pi} \cdot \pi$ Proposition (Realizing Peirce's law)

$$\texttt{cc} \Vdash ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$$

Proof: Exercise

Anatomy of the model

2nd-order arithmetic (PA2)

• Denotation of universal quantification:

Falsity value:
$$\|\forall x A\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$$
 (by definition)Truth value: $|\forall x A| = \bigcap_{n \in \mathbb{N}} |A\{x := n\}|$ (by orthogonality)

Classical realizability

(and similarly for 2nd-order universal quantification)

(1/2)

Anatomy of the model

2nd-order arithmetic (PA2)

• Denotation of universal quantification:

Falsity value:
$$\|\forall x A\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$$
 (by definition)Truth value: $|\forall x A| = \bigcap |A\{x := n\}|$ (by orthogonality)

.

 $n \in \mathbb{N}$

(and similarly for 2nd-order universal quantification)

Denotation of implication:

Falsity value: $||A \Rightarrow B|| = |A| \cdot ||B||$ (by definition)Truth value: $|A \Rightarrow B| \subseteq |A| \rightarrow |B|$ (by orthogonality)writing $|A| \rightarrow |B| = \{t \in \Lambda : \forall u \in |A| \ tu \in |B|\}$ (realizability arrow)

(1/2)

Extracted programs

Classical realizability

Introduction 00000000 Extracted programs

Classical realizability

(2/2)

Anatomy of the model

- Degenerate case: $\bot\!\!\!\bot = \varnothing$
 - Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

In the case where $\bot\!\!\!\bot = 0$, for every closed formula A:

$$|A| = \begin{cases} \Lambda & \text{if } \mathscr{M} \models A \\ \varnothing & \text{if } \mathscr{M} \not\models A \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 00000000 Extracted programs

Classical realizability

Witness extraction 00000000000000000

(2/2)

- Anatomy of the model
 - Degenerate case: $\bot\!\!\!\bot = \varnothing$
 - Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

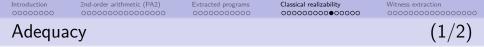
$$|A| = \begin{cases} \Lambda & \text{if } \mathscr{M} \models A \\ \varnothing & \text{if } \mathscr{M} \not\models A \end{cases}$$

- Non degenerate cases: $\bot\!\!\!\bot \neq \varnothing$
 - Every truth value |A| is inhabited:
 - If $t_0 \star \pi_0 \in \mathbb{L}$, then $k_{\pi_0} t_0 \in |A|$ for all A (paraproof)
 - We shall only consider realizers that are proof-like terms

Adequa				(1/2)
Introduction 00000000	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction

- **Aim:** Prove the theorem of adequacy
- t : A (in the sense of λ NK2) implies $t \Vdash A$ (in the sense of realizability)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



- **Aim:** Prove the theorem of adequacy
- t : A (in the sense of λ NK2) implies $t \Vdash A$ (in the sense of realizability)
 - Closing typing judgments $x_1 : A_1, \ldots, x_n : A_n \vdash t : A$
 - We close logical objects (1st-order terms, formulas, predicates) using semantic objects (natural numbers, falsity values, falsity functions)

• We close proof-terms using realizers

- **Aim:** Prove the theorem of adequacy
- t : A (in the sense of λ NK2) implies $t \Vdash A$ (in the sense of realizability)
 - Closing typing judgments $x_1: A_1, \ldots, x_n: A_n \vdash t: A$
 - We close logical objects (1st-order terms, formulas, predicates) using semantic objects (natural numbers, falsity values, falsity functions)
 - We close proof-terms using realizers

Definition (Valuations)

() A valuation is a function ρ such that

•
$$\rho(x) \in \mathbb{IN}$$

• $\rho(X) : \mathbb{IN}^k \to \mathfrak{P}(\Pi)$

for each 1st-order variable x for each 2nd-order variable X of arity k

2 Closure of A with ρ written $A[\rho]$

(formula with parameters)

Introduction
00000000

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

(2/2)

Adequacy

Definition (Adequate judgment, adequate rule)

Given a fixed pole \bot :

• A judgment $x_1 : A_1, \ldots, x_n : A_n \vdash t : A$ is adequate if for every valuation ρ and for all $u_1 \Vdash A_1[\rho], \ldots, u_n \Vdash A_n[\rho]$ we have:

$$t\{x_1 := u_1, \ldots, x_n := u_n\} \Vdash A[\rho]$$

 A typing rule is adequate if it preserves the property of adequacy (from the premises to the conclusion of the rule)

Introduction
00000000

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Adequacy

Definition (Adequate judgment, adequate rule)

Given a fixed pole \bot :

• A judgment $x_1 : A_1, \ldots, x_n : A_n \vdash t : A$ is adequate if for every valuation ρ and for all $u_1 \Vdash A_1[\rho], \ldots, u_n \Vdash A_n[\rho]$ we have:

$$t\{x_1 := u_1, \ldots, x_n := u_n\} \Vdash A[\rho]$$

A typing rule is adequate if it preserves the property of adequacy (from the premises to the conclusion of the rule)

Theorem

- All typing rules of λ NK2 are adequate
- **2** All derivable judgments of λ NK2 are adequate

Corollary: If $\vdash t : A$ (A closed formula), then $t \parallel \vdash A$

Extending adequacy to subtyping

Definition (Adequate subtyp	ing j	udgment)	
Judgment $A \leq B$ adequate	≡	$\ B[ho]\ \subseteq \ A[ho]\ $	(for all valuations)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Remark: Implies $|A[\rho]| \subseteq |B[\rho]|$ (for all ρ), but strictly stronger

Extending adequacy to subtyping

Definition (Adequate subtyping judgment)					
Judgment $A \leq B$ adequate	≡	$\ B[\rho]\ \subseteq \ A[\rho]\ $	(for all valuations)		

Remark: Implies $|A[\rho]| \subseteq |B[\rho]|$ (for all ρ), but strictly stronger

• Some adequate typing/subtyping rules:

$$\frac{A \leq B}{A \leq A} \quad \frac{A \leq B}{A \leq C} \quad \frac{\Gamma \vdash t : A}{\Gamma \vdash t : B} \quad \frac{A \leq B}{\Gamma \vdash t : B} \\
\frac{A \leq A}{\forall x A \leq A \{x := e\}} \quad \overline{\forall X A \leq A \{X := P\}} \\
\frac{A \leq B}{A \leq \forall x B} \quad x \notin FV(A) \quad \frac{A \leq B}{A \leq \forall X B} \quad X \notin FV(A) \quad \frac{A' \leq A}{A \Rightarrow B \leq A' \Rightarrow B'} \\
\frac{A \leq B}{\forall x (A \Rightarrow B) \leq A \Rightarrow \forall x B} \quad x \notin FV(A) \quad \overline{\forall X (A \Rightarrow B) \leq A \Rightarrow \forall X B} \quad X \notin FV(A)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Extending adequacy to subtyping

Definition (Adequate subtyping judgment)				
Judgment $A \leq B$ adequate	≡	$\ B[\rho]\ \subseteq \ A[\rho]\ $	(for all valuations)	

Remark: Implies $|A[\rho]| \subseteq |B[\rho]|$ (for all ρ), but strictly stronger

• Some adequate typing/subtyping rules:

$$\frac{A \leq B}{A \leq A} \quad \frac{A \leq B}{A \leq C} \quad \frac{F \vdash t : A}{F \vdash t : B} \quad A \leq B}{F \vdash t : B}$$

$$\frac{A \leq B}{\forall x A \leq A\{x := e\}} \quad \forall X A \leq A\{X := P\}$$

$$\frac{A \leq B}{A \leq \forall x B} \quad x \notin FV(A) \quad \frac{A \leq B}{A \leq \forall X B} \quad x \notin FV(A) \quad \frac{A' \leq A}{A \Rightarrow B \leq A' \Rightarrow B'}$$

$$\frac{A \leq B}{\forall x (A \Rightarrow B) \leq A \Rightarrow \forall x B} \quad x \notin FV(A) \quad \forall X (A \Rightarrow B) \leq A \Rightarrow \forall X B} \quad X \notin FV(A)$$

• Example: $\underbrace{\forall X \forall Y (((X \Rightarrow Y) \Rightarrow X) \Rightarrow X)}_{\text{Peirce's law}} \leq \underbrace{\forall X (\neg \neg X \Rightarrow X)}_{\text{DNE}}$

(日)、

э.

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Dealisin	an anualitian			

Realizing equalities

• Equality between individuals defined by

$$e_1 = e_2 \equiv \forall Z (Z(e_1) \Rightarrow Z(e_2))$$
 (Leibniz equality)

Denotation of Leibniz equality

Given two closed first-order terms e1, e2

$$\|\mathbf{e}_1 = \mathbf{e}_2\| = \begin{cases} \|\mathbf{1}\| = \{t \cdot \pi : (t \star \pi) \in \mathbb{L}\} & \text{if } \llbracket \mathbf{e}_1 \rrbracket = \llbracket \mathbf{e}_2 \rrbracket \\ \|\top \Rightarrow \bot\| = \Lambda \cdot \Pi & \text{if } \llbracket \mathbf{e}_1 \rrbracket \neq \llbracket \mathbf{e}_2 \rrbracket \end{cases}$$

writing $\mathbf{1} \equiv \forall Z (Z \Rightarrow Z)$ and $\top \equiv \dot{\varnothing}$

- Intuitions:
 - A realizer of a true equality (in the ground model \mathcal{M}) behaves as the identity function $\lambda z \, . \, z$
 - A realizer of a false equality (in the ground model *M*) behaves as a point of backtrack (breakpoint)

(and a pole \bot)

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	00000000000	000000000000000000	000000000000000000000000000000000000000
Realizir	ng axioms			

Corollary 1 (Realizing true equations)

lf	$\mathscr{M} \models orall ec{x} (e_1(ec{x}) = e_2(ec{x}))$	(truth in the ground model)
then	$\mathbf{I} \equiv \lambda z . z \Vdash \forall \vec{x} \left(e_1(\vec{x}) = e_2(\vec{x}) \right)$	(universal realizability)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Corollary 2

All defining equations of primitive recursive function symbols (+, -, ×, etc.) are universally realized by $I \equiv \lambda z . z$

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	00000000000	000000000000000000	000000000000000000000000000000000000000
Deali				

Realizing axioms

Corollary 1 (Realizing true equations)

If $\mathscr{M} \models \forall \vec{x} (e_1(\vec{x}) = e_2(\vec{x}))$

then $\mathbf{I} \equiv \lambda z \cdot z \Vdash \forall \vec{x} (e_1(\vec{x}) = e_2(\vec{x}))$

(truth in the ground model)

(universal realizability)

Corollary 2

All defining equations of primitive recursive function symbols (+, -, ×, etc.) are universally realized by $I \equiv \lambda z . z$

Corollary 3 (Realizing Peano axioms)

$$\begin{array}{ccc} \lambda z \, . \, z \, \mathbf{I} & \parallel \vdash & \forall x \, \neg (s(x) = 0) \\ \mathbf{I} & \parallel \vdash & \forall x \, \forall y \, (s(x) = s(y) \Rightarrow x = y) \end{array}$$

Theorem: If $PA2 \vdash A$, then $\theta \parallel \vdash A$ for some proof-like term θ

Introduction 00000000 2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

Provability, universal realizability and truth

- From what precedes:

(by a proof-like term)

(in the full standard model)

 → Universal realizability: an intermediate notion between provability and truth Introduction 00000000 2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

Provability, universal realizability and truth

From what precedes:

- A provable \Rightarrow A universally realized (by a

(by a proof-like term)

- (in the full standard model)
- → Universal realizability: an intermediate notion between provability and truth

Beware!

Intuitionistic proofs of A	\subseteq	Classical proofs of A
\cap		\cap
Intuitionistic realizers of A	⊈ ⊉	Classical realizers of A

Introduction
00000000

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Plan

- 2 Second-order arithmetic (PA2)
- 3 Extracted programs
- 4 The classical realizability interpretation

5 Witness extraction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ��や

Introduction 00000000 2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The problem of witness extraction

• Problem: Extract a witness from a universal realizer (or a proof)

$$t_0 \Vdash (\exists x \in \mathbf{N}) A(x)$$

i.e. some $n \in \mathbb{N}$ such that A(n) is true

Extracted programs

Classical realizability

The problem of witness extraction

• Problem: Extract a witness from a universal realizer (or a proof)

$$t_0 \Vdash (\exists x \in \mathbf{N}) A(x)$$

i.e. some $n \in \mathbb{N}$ such that A(n) is true

• This is not always possible!

$$t_0 \Vdash (\exists x \in \mathbf{N}) ((x = 1 \land C) \lor (x = 0 \land \neg C))$$

(C = Continuum hypothesis, Goldbach's conjecture, etc.)

Extracted programs

Classical realizability

The problem of witness extraction

• Problem: Extract a witness from a universal realizer (or a proof)

$$t_0 \Vdash (\exists x \in \mathbf{N}) A(x)$$

i.e. some $n \in \mathbb{N}$ such that A(n) is true

• This is not always possible!

$$t_0 \Vdash (\exists x \in \mathbf{N}) ((x = 1 \land C) \lor (x = 0 \land \neg C))$$

(C = Continuum hypothesis, Goldbach's conjecture, etc.)

- Two possible compromises:
 - Intuitionistic logic: restrict the shape of the realizer t₀ (by only keeping intuitionistic reasoning principles)
 - Classical logic: restrict the shape of the formula A(x) (typically: Δ₀⁰-formulas)

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Storage	operators			(1/2)

• The call-by-value implication:

Formulas	A,B ::= ··· $\{e\} \Rightarrow A$
with the semantics:	$\ \{e\} \Rightarrow A\ = \{\overline{n} \cdot \pi : n = e^{\mathbb{N}}, \pi \in \ A\ \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Storage	operators			(1/2)

• The call-by-value implication:

Formulas $A, B ::= \cdots | \{e\} \Rightarrow A$ $\|\{e\} \Rightarrow A\| = \{\bar{n} \cdot \pi : n = e^{\mathbb{N}}, \pi \in \|A\|\}$ with the semantics:

• From the definition: $e \in \mathbf{N} \Rightarrow A \leq \{e\} \Rightarrow A$

so that: $I \Vdash \forall x \forall Z [(x \in \mathbb{N} \Rightarrow Z) \Rightarrow (\{x\} \Rightarrow Z)]$ (direct implication)

(1/2)

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Storage	operators			(1/2)

 (\perp/\perp)

• The call-by-value implication:

Formulas $A, B ::= \cdots | \{e\} \Rightarrow A$ $\|\{e\} \Rightarrow A\| = \{\overline{n} \cdot \pi : n = e^{\mathbb{N}}, \pi \in \|A\|\}$ with the semantics:

• From the definition: $e \in \mathbf{N} \Rightarrow A \leq \{e\} \Rightarrow A$

so that: $I \Vdash \forall x \forall Z [(x \in \mathbb{N} \Rightarrow Z) \Rightarrow (\{x\} \Rightarrow Z)]$ (direct implication)

Definition (Storage operator)

A storage operator is a closed proof-like term M such that:

 $M \Vdash \forall x \forall Z [(\{x\} \Rightarrow Z) \Rightarrow (x \in \mathbf{N} \Rightarrow Z)]$ (converse implication)

Ctorage	operators			(1/2)
0000000	000000000000000000000000000000000000000	0000000000	00000000000000	000000000000000000000000000000000000000
Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction

Storage operators

Formulas	A,B ::= ··· $\{e\} \Rightarrow A$	
with the semantics:	$\ \{e\} \Rightarrow A\ = \{\overline{n} \cdot \pi : n = e^{\mathbb{N}}, \pi \in \ A\ \}$	

• From the definition: $e \in \mathbf{N} \Rightarrow A \leq \{e\} \Rightarrow A$

so that: $I \Vdash \forall x \forall Z [(x \in \mathbb{N} \Rightarrow Z) \Rightarrow (\{x\} \Rightarrow Z)]$ (direct implication)

Definition (Storage operator)

A storage operator is a closed proof-like term M such that:

 $M \Vdash \forall x \forall Z [(\{x\} \Rightarrow Z) \Rightarrow (x \in \mathbf{N} \Rightarrow Z)]$ (converse implication)

 (\perp/\perp)

Theorem (Existence)

Storage operators exist, e.g.: $M := \lambda fn \cdot n f (\lambda hx \cdot h(\bar{s}x)) \bar{0}$

Introduction 00000000	2nd-order arithmetic (PA2) 0000000000000000000	Extracted programs	Classical realizability 00000000000000000	Witness extraction
Storage	operators			(2/2)

Intuitively, a storage operator

$$M \Vdash \forall x \forall Z [(\{x\} \Rightarrow Z) \Rightarrow (x \in \mathbf{N} \Rightarrow Z)]$$

is a proof-like term that is intended to be applied to

• a function f that only accepts values (i.e. intuitionistic integers)

• a classical integer $t \Vdash n \in \mathbf{N}$ (*n* arbitrary)

and that evaluates (or 'smoothes') the classical integer t into a value of the form \bar{n} before passing this value to f

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Storage	operators			(2/2)

Intuitively, a storage operator

$$M \Vdash \forall x \forall Z [(\{x\} \Rightarrow Z) \Rightarrow (x \in \mathbf{N} \Rightarrow Z)]$$

is a proof-like term that is intended to be applied to

- a function f that only accepts values (i.e. intuitionistic integers)
- a classical integer $t \Vdash n \in \mathbf{N}$ (*n* arbitrary)

and that evaluates (or 'smoothes') the classical integer t into a value of the form \bar{n} before passing this value to f

• By subtyping, we also have:

$$M \Vdash \forall Z [\forall x (\{x\} \Rightarrow Z(x)) \Rightarrow (\forall x \in \mathbf{N}) Z(x)]$$

This means that if a property Z(x) holds for all intuitionistic integers, then it holds for all classical integers too

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Storage	operators			(2/2)

• Intuitively, a storage operator

$$M \Vdash \forall x \forall Z [(\{x\} \Rightarrow Z) \Rightarrow (x \in \mathbf{N} \Rightarrow Z)]$$

is a proof-like term that is intended to be applied to

- a function f that only accepts values (i.e. intuitionistic integers)
- a classical integer $t \Vdash n \in \mathbf{N}$ (*n* arbitrary)

and that evaluates (or 'smoothes') the classical integer t into a value of the form \bar{n} before passing this value to f

• By subtyping, we also have:

$$M \Vdash \forall Z [\forall x (\{x\} \Rightarrow Z(x)) \Rightarrow (\forall x \in \mathbf{N}) Z(x)]$$

This means that if a property Z(x) holds for all intuitionistic integers, then it holds for all classical integers too

• Conclusion: $e \in \mathbf{N} \Rightarrow A$ and $\{e\} \Rightarrow A$ interchangeable

Classical realizability

Witness extraction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Computing with storage operators

• Given a k-ary function symbol f, we let:

$$\begin{aligned} \mathsf{Total}(f) &:= (\forall x_1 \in \mathbf{N}) \cdots (\forall x_k \in \mathbf{N}) (f(x_1, \dots, x_k) \in \mathbf{N}) \\ \mathsf{Comput}(f) &:= \forall x_1 \cdots \forall x_k \, \forall Z \, [\{x_1\} \Rightarrow \dots \Rightarrow \{x_k\} \Rightarrow \\ & (\{f(x_1, \dots, x_k)\} \Rightarrow Z) \Rightarrow Z] \end{aligned}$$

Classical realizability

Witness extraction

Computing with storage operators

• Given a k-ary function symbol f, we let:

$$\begin{aligned} \mathsf{Total}(f) &:= (\forall x_1 \in \mathbf{N}) \cdots (\forall x_k \in \mathbf{N}) (f(x_1, \dots, x_k) \in \mathbf{N}) \\ \mathsf{Comput}(f) &:= \forall x_1 \cdots \forall x_k \, \forall Z \, [\{x_1\} \Rightarrow \dots \Rightarrow \{x_k\} \Rightarrow \\ (\{f(x_1, \dots, x_k)\} \Rightarrow Z) \Rightarrow Z] \end{aligned}$$

Theorem (Specification of the formula Comput(f))

For all $t \in \Lambda$, the following assertions are equivalent:

•
$$t \Vdash Comput(f)$$

2 t computes f: for all $(n_1, \ldots, n_k) \in \mathbb{N}^k$, $u \in \Lambda$, $\pi \in \Pi$:

$$t \star \overline{n}_1 \cdots \overline{n}_k \cdot u \cdot \pi \succ u \star \overline{f(n_1, \dots, n_k)} \cdot \pi$$

tracted programs

Classical realizability

Witness extraction

Computing with storage operators

• Given a k-ary function symbol f, we let:

$$\begin{aligned} \mathsf{Total}(f) &:= (\forall x_1 \in \mathbf{N}) \cdots (\forall x_k \in \mathbf{N}) (f(x_1, \dots, x_k) \in \mathbf{N}) \\ \mathsf{Comput}(f) &:= \forall x_1 \cdots \forall x_k \, \forall Z \, [\{x_1\} \Rightarrow \dots \Rightarrow \{x_k\} \Rightarrow \\ (\{f(x_1, \dots, x_k)\} \Rightarrow Z) \Rightarrow Z] \end{aligned}$$

Theorem (Specification of the formula Comput(f))

For all $t \in \Lambda$, the following assertions are equivalent:

•
$$t \Vdash Comput(f)$$

2 t computes f: for all $(n_1, \ldots, n_k) \in \mathbb{N}^k$, $u \in \Lambda$, $\pi \in \Pi$:

$$t \star \overline{n}_1 \cdots \overline{n}_k \cdot u \cdot \pi \succ u \star \overline{f(n_1, \dots, n_k)} \cdot \pi$$

• Using a storage operator *M*, we can build proof-like terms:

$$\begin{array}{rcl} \xi_k & \Vdash & \operatorname{Total}(f) & \Rightarrow & \operatorname{Comput}(f) \\ \xi'_k & \Vdash & \operatorname{Comput}(f) & \Rightarrow & \operatorname{Total}(f) \end{array}$$

 Introduction
 2nd-order arithmetic (PA2)
 Extracted programs
 Classical realizability

 000000000
 000000000000
 000000000000
 0000000000000

The naive extraction method

A classical realizer t₀ II⊢ (∃x ∈ N) A(x) always evaluates to a pair witness/justification:

Naive extraction

If $t_0 \Vdash (\exists x \in \mathbf{N}) A(x)$, then there are $n \in \mathbb{N}$ and $u \in \Lambda$ such that:

$$t_0 \star M(\lambda xy \, . \, \operatorname{stop} x y) \cdot \diamond \quad \succ \quad \operatorname{stop} \star \overline{n} \cdot u \cdot \diamond$$

(where $u \Vdash A(n)$ w.r.t. the particular pole \bot ... needed to prove the property)

2nd-order arithmetic (PA2)

Witness extraction

The naive extraction method

• A classical realizer $t_0 \parallel (\exists x \in \mathbf{N}) A(x)$ always evaluates to a pair witness/justification:

Naive extraction

 $t_0 \Vdash (\exists x \in \mathbf{N}) A(x)$, then there are $n \in \mathbb{N}$ and $u \in \Lambda$ such that: lf

 $t_0 \star M(\lambda xy . \operatorname{stop} x y) \cdot \diamond \succ \operatorname{stop} \star \overline{n} \cdot u \cdot \diamond$

(where $u \Vdash A(n)$ w.r.t. the particular pole \bot ... needed to prove the property)

• But $n \in \mathbb{N}$ might be a false witness because the justification $u \Vdash A(n)$ is cheating! (*u* might contain hidden continuations)
 Introduction
 2nd-order arithmetic (PA2)
 Extracted programs
 Classical reali

 00000000
 000000000000
 0000000000
 000000000

Classical realizability

The naive extraction method

A classical realizer t₀ ⊪ (∃x ∈ N) A(x) always evaluates to a pair witness/justification:

Naive extraction

If $t_0 \Vdash (\exists x \in \mathbf{N}) A(x)$, then there are $n \in \mathbb{N}$ and $u \in \Lambda$ such that:

 $t_0 \star M(\lambda xy \, . \, \operatorname{stop} x \, y) \cdot \diamond \quad \succ \quad \operatorname{stop} \star \overline{n} \cdot u \cdot \diamond$

(where $u \Vdash A(n)$ w.r.t. the particular pole \bot ... needed to prove the property)

- But $n \in \mathbb{N}$ might be a false witness because the justification $u \Vdash A(n)$ is cheating! (*u* might contain hidden continuations)
- In the case where t_0 comes from an intuitionistic proof, extracted witness $n \in \mathbb{N}$ is always correct

Extracted programs

Classical realizability 00000000000000000 Witness extraction

Extraction in the Σ_1^0 -case

Extraction in the Σ_1^0 -case

H

$$f \quad t_0 \Vdash (\exists x \in \mathbf{N})(f(x) = 0), \quad \text{then}$$
$$t_0 \star M(\lambda xy . \qquad \mathbf{y} (\operatorname{stop} x)) \cdot \diamond \quad \succ \quad \operatorname{stop} \star \overline{n} \cdot \diamond$$

- Storage operator M used to evaluate 1st component (x)
- 2nd component (y) used as a breakpoint (Relies on the particular structure of equality realizers)
- Holds independently from the instruction set
- Supports any representation of numerals (One has to implement the storage operator *M* accordingly)

Extracted programs

Classical realizability

Extraction in the Σ_1^0 -case

Extraction in the Σ_1^0 -case (+ display intermediate results)

If
$$t_0 \Vdash (\exists x \in \mathbf{N})(f(x) = 0)$$
, then

 $t_0 \star M(\lambda xy \operatorname{.print} x y (\operatorname{stop} x)) \cdot \diamond \quad \succ \quad \operatorname{stop} \star \overline{n} \cdot \diamond$

for some $n \in \mathbb{N}$ such that f(n) = 0

- Storage operator *M* used to evaluate 1st component (*x*)
- 2nd component (y) used as a breakpoint (Relies on the particular structure of equality realizers)
- Holds independently from the instruction set
- Supports any representation of numerals (One has to implement the storage operator *M* accordingly)

Example: the minimum principle

• Given a unary function symbol f, write:

$$\begin{aligned} & \text{Fotal}(f) & := \quad (\forall x \in \mathbf{N})(f(x) \in \mathbf{N}) & (\text{totality predicate}) \\ & x \leq y & := \quad x - y = 0 & (\text{truncated subtraction}) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	00000000000000000	00000000000	000000000000000000	0000000000000000000

Example: the minimum principle

• Given a unary function symbol f, write:

$$egin{aligned} & \operatorname{Fotal}(f) & := & (\forall x \in \mathbf{N})(f(x) \in \mathbf{N}) & (ext{totality predicate}) \ & x \leq y & := & x-y=0 & (ext{truncated subtraction}) \end{aligned}$$

Theorem (Minimum principle – MinP)

$$\mathsf{PA2} \vdash \mathsf{Total}(f) \Rightarrow (\exists x \in \mathsf{N}) \underbrace{(\forall y \in \mathsf{N}) (f(x) \le f(y))}_{\mathsf{undecidable}}$$

Proof. Reductio ad absurdum + course by value induction

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	0000000000000000000	000000000000000000000000000000000000000

Example: the minimum principle

• Given a unary function symbol f, write:

$$\begin{aligned} & \text{Fotal}(f) & := \quad (\forall x \in \mathbf{N})(f(x) \in \mathbf{N}) & (\text{totality predicate}) \\ & x \leq y & := \quad x - y = 0 & (\text{truncated subtraction}) \end{aligned}$$

Theorem (Minimum principle – MinP)

$$\mathsf{PA2} \vdash \mathsf{Total}(f) \Rightarrow (\exists x \in \mathsf{N}) \underbrace{(\forall y \in \mathsf{N}) (f(x) \le f(y))}_{\text{undecidable}}$$

Proof. Reductio ad absurdum + course by value induction

- The minimum principle is not intuitionistically provable (oracle)
- We cannot apply the Σ_1^0 -extraction technique to the above proof (applied to a totality proof of f), since the conclusion is Σ_2^0 The body $(\forall y \in \mathbf{N}) (f(x) \le f(y))$ of \exists -quantification is undecidable

Classical realizability

Witness extraction

Implementation of the minimum principle

$$\mathbf{I} \equiv \lambda x . x \qquad \mathbf{T} \equiv \lambda x y . x \qquad \mathbf{F} \equiv \lambda x y . y$$

 $\langle t_1, t_2 \rangle \equiv \lambda z . z t_1 t_2$ (z fresh λ -variable)

pred
$$\equiv \lambda n . n \langle \overline{0}, \overline{0} \rangle (\lambda p . p (\lambda xy . \langle x, \overline{s} x \rangle)) (\lambda xy . x)$$

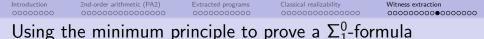
minus $\equiv \lambda n, m \cdot m n$ pred

$$\mathsf{cmp} \equiv \lambda n, m \cdot \mathsf{minus} \ n \ m \ \mathsf{T} \ (\lambda_{-}, \mathsf{F})$$

$$\mathbf{Y} \equiv (\lambda y f . f (y y f)) (\lambda y f . f (y y f))$$

 $\begin{array}{lll}\mathsf{MinP} &\equiv& \lambda f . \mathfrak{cc} \left(\lambda k . \mathbf{Y} \left(\lambda r, n . \langle n, \lambda m . \operatorname{cmp} \left(f \ n\right) \left(f \ m\right) \mathbf{I} \left(k \ (r \ m)\right) \rangle\right) \overline{\mathbf{0}}\right) \\ & \Vdash & (\forall x \in \mathbf{N}) \ f(x) \in \mathbf{N} \quad \Rightarrow \quad (\exists x \in \mathbf{N}) (\forall y \in \mathbf{N}) \ f(x) \leq f(y) \end{array}$

▲□▶▲圖▶▲圖▶▲圖▶ = ● のへの

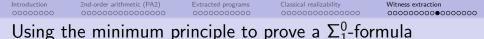


 Idea: The value x given by the minimum principle can be used to prove a Σ₁⁰-formula, so that we can perform program extraction:

Corollary

$$PA2 \vdash Total(f) \Rightarrow (\exists x \in \mathbb{N}) \underbrace{(f(x) \leq f(2x+1))}_{\text{decidable}}$$
More generally:
$$PA2 \vdash Total(f) \land Total(g) \Rightarrow (\exists x \in \mathbb{N}) (f(x) \leq f(g(x)))$$

Proof. Take the point *x* given by the minimum principle



 Idea: The value x given by the minimum principle can be used to prove a Σ₁⁰-formula, so that we can perform program extraction:

Corollary

$$PA2 \vdash Total(f) \Rightarrow (\exists x \in \mathbb{N}) \underbrace{(f(x) \leq f(2x+1))}_{\text{decidable}}$$
More generally:
$$PA2 \vdash Total(f) \land Total(g) \Rightarrow (\exists x \in \mathbb{N}) (f(x) \leq f(g(x)))$$

Proof. Take the point x given by the minimum principle

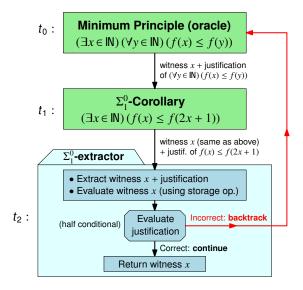
- Applying Σ_1^0 -extraction to the above non-constructive proof, we get a correct witness in finitely many evaluation steps
- How is this witness computed?

2nd-order arithmetic (PA2)

Extracted program

Classical realizability

The algorithm underlying Σ_1^0 -extraction



◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability 00000000000000000 ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Transcript of the extraction process

Take f(x) = |x - 1000| (real minimum at x = 1000) and apply Σ_1^0 -extraction to the proof of $(\exists x \in \mathbf{N}) (f(x) \le f(2x + 1))$

Extracted programs

Classical realizability

Transcript of the extraction process

 $\begin{array}{ll} \mbox{Take} & f(x) = |x - 1000| & (\mbox{real minimum at } x = 1000) \\ \mbox{and apply Σ_1^0-extraction to the proof of} & (\exists x \in \mathbf{N}) \, (f(x) \leq f(2x+1)) \end{array}$

Step 1 Oracle says: take x = 0 since $(\forall y \in \mathbb{N}) (f(0) \le f(y))$ (false)

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Transcript of the extraction process

 $\begin{array}{ll} {\sf Take} & f(x) = |x - 1000| & ({\sf real \ minimum \ at \ } x = 1000) \\ {\sf and \ apply \ } \Sigma_1^0 {\rm -extraction \ to \ the \ proof \ of \ } & (\exists x \in {\sf N}) \, (f(x) \leq f(2x+1)) \end{array}$

Step 1	Oracle says:	take $x = 0$	since $(\forall y \in \mathbf{N}) (f(0) \leq f(y))$	(false)
	Corollary says:	take $x = 0$	since $f(0) \leq f(1)$	(false)

Extracted programs

Classical realizability 00000000000000000 Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} \mbox{Take} & f(x) = |x - 1000| & (\mbox{real minimum at } x = 1000) \\ \mbox{and apply Σ_1^0-extraction to the proof of $(\exists x \in \mathbf{N})$($f(x) \leq f(2x+1))$ } \end{array}$

 $\begin{array}{lll} \mbox{Step 1} & \mbox{Oracle says:} & \mbox{take } x=0 & \mbox{since } (\forall y \in {\sf N}) \left(f(0) \leq f(y)\right) & (\mbox{false}) \\ & \mbox{Corollary says:} & \mbox{take } x=0 & \mbox{since } f(0) \leq f(1) & (\mbox{false}) \\ & \mbox{Σ_1^0-extractor evaluates incorrect justification and backtracks} \\ \end{array}$

Extracted programs

Classical realizability

Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} \mbox{Take} & f(x) = |x - 1000| & (\mbox{real minimum at } x = 1000) \\ \mbox{and apply Σ_1^0-extraction to the proof of $(\exists x \in \mathbf{N})$($f(x) \leq f(2x+1))$} \end{array}$

Step 1Oracle says:take x = 0since $(\forall y \in \mathbf{N}) (f(0) \le f(y))$ (false)Corollary says:take x = 0since $f(0) \le f(1)$ (false) Σ_1^0 -extractor evaluates incorrect justification and backtracksStep 2Oracle says:take x = 1since $(\forall y \in \mathbf{N}) (f(1) \le f(y))$ (false)

- イロト イヨト イヨト ノ目 - のへの

Extracted programs

Classical realizability

Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} \mbox{Take} & f(x) = |x - 1000| & (\mbox{real minimum at } x = 1000) \\ \mbox{and apply Σ_1^0-extraction to the proof of $(\exists x \in \mathbf{N})$($f(x) \leq f(2x+1))$} \end{array}$

Step 1Oracle says:take x = 0since $(\forall y \in \mathbf{N}) (f(0) \le f(y))$ (false)Corollary says:take x = 0since $f(0) \le f(1)$ (false) Σ_1^0 -extractor evaluates incorrect justification and backtracksStep 2Oracle says:take x = 1since $(\forall y \in \mathbf{N}) (f(1) \le f(y))$ (false)Corollary says:take x = 1since $f(1) \le f(3)$ (false)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Extracted programs

Classical realizability 00000000000000000 Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} \mbox{Take} & f(x) = |x - 1000| & (\mbox{real minimum at } x = 1000) \\ \mbox{and apply Σ_1^0-extraction to the proof of $(\exists x \in \mathbf{N})$($f(x) \leq f(2x+1))$} \end{array}$

Step 1Oracle says:take x = 0since $(\forall y \in \mathbf{N}) (f(0) \le f(y))$ (false)Corollary says:take x = 0since $f(0) \le f(1)$ (false) Σ_1^0 -extractor evaluates incorrect justification and backtracksStep 2Oracle says:take x = 1since $(\forall y \in \mathbf{N}) (f(1) \le f(y))$ (false)Corollary says:take x = 1since $f(1) \le f(3)$ (false) Σ_1^0 -extractor evaluates incorrect justification and backtracks

Extracted programs

Classical realizability 00000000000000000 Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} \mbox{Take} & f(x) = |x - 1000| & (\mbox{real minimum at } x = 1000) \\ \mbox{and apply Σ_1^0-extraction to the proof of $(\exists x \in \mathbf{N})$($f(x) \leq f(2x+1))$ } \end{array}$

 $\begin{array}{lll} \mbox{Step 1} & \mbox{Oracle says:} & \mbox{take } x = 0 & \mbox{since } (\forall y \in {\sf N}) \left(f(0) \leq f(y)\right) & (\mbox{false}) \\ & \mbox{Corollary says:} & \mbox{take } x = 0 & \mbox{since } f(0) \leq f(1) & (\mbox{false}) \\ & \mbox{Σ_1^0-extractor evaluates incorrect justification and backtracks} \\ \mbox{Step 2} & \mbox{Oracle says:} & \mbox{take } x = 1 & \mbox{since } f(1) \leq f(3) & (\mbox{false}) \\ & \mbox{Corollary says:} & \mbox{take } x = 1 & \mbox{since } f(1) \leq f(3) & (\mbox{false}) \\ & \mbox{Σ_1^0-extractor evaluates incorrect justification and backtracks} \\ \end{array}$

Step 3 Oracle says: take x = 3 since $(\forall y \in \mathbf{N}) (f(3) \le f(y))$ (false)

Extracted programs

Classical realizability 00000000000000000 Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} \mbox{Take} & f(x) = |x - 1000| & (\mbox{real minimum at } x = 1000) \\ \mbox{and apply Σ_1^0-extraction to the proof of} & (\exists x \in \mathbf{N}) \left(f(x) \leq f(2x+1) \right) \end{array}$

Step 1	Oracle says:	take $x = 0$	since	$(\forall y \in \mathbf{N}) (f(0) \leq f(y))$	(false)
	Corollary says:	take $x = 0$	since	$f(0) \leq f(1)$	(false)
	Σ_1^0 -extractor eva	luates incorrect	justific	ation and backtracks	
Step 2	Oracle says:	take $x = 1$		$(\forall y \in N) (f(1) \leq f(y))$	(false)
	Corollary says:	take $x = 1$	since	$f(1) \leq f(3)$	(false)
	Σ_1^0 -extractor eva	luates incorrect	justific	ation and backtracks	

Step 3	Oracle says:	take $x = 3$	since $(\forall y \in \mathbf{N}) (f(3) \leq f(y))$	(false)
	Corollary says:	take $x = 3$	since $f(3) \leq f(7)$	(false)

Extracted programs

Classical realizability

Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} \mbox{Take} & f(x) = |x - 1000| & (\mbox{real minimum at } x = 1000) \\ \mbox{and apply Σ_1^0-extraction to the proof of $(\exists x \in \mathbf{N})$($f(x) \leq f(2x+1))$} \end{array}$

Step 1Oracle says:take x = 0since $(\forall y \in \mathbf{N}) (f(0) \le f(y))$ (false)Corollary says:take x = 0since $f(0) \le f(1)$ (false) Σ_1^0 -extractor evaluates incorrect justification and backtracks(false)Corollary says:take x = 1since $(\forall y \in \mathbf{N}) (f(1) \le f(y))$ (false)Corollary says:take x = 1since $f(1) \le f(3)$ (false) Σ_1^0 -extractor evaluates incorrect justification and backtracks(false)

 $\begin{array}{lll} \mbox{Step 3} & \mbox{Oracle says:} & \mbox{take } x=3 & \mbox{since } (\forall y \in {\sf N}) \left(f(3) \leq f(y)\right) & (\mbox{false}) \\ & \mbox{Corollary says:} & \mbox{take } x=3 & \mbox{since } f(3) \leq f(7) & (\mbox{false}) \\ & \mbox{Σ_1^0-extractor evaluates incorrect justification and backtracks} \\ \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Extracted programs

Classical realizability

Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} \mbox{Take} & f(x) = |x - 1000| & (\mbox{real minimum at } x = 1000) \\ \mbox{and apply Σ_1^0-extraction to the proof of $(\exists x \in \mathbf{N})$($f(x) \leq f(2x+1))$ } \end{array}$

Oracle says: take x = 0 since $(\forall y \in \mathbf{N}) (f(0) \le f(y))$ Step 1 (false) Corollary says: take x = 0 since f(0) < f(1)(false) Σ_1^0 -extractor evaluates incorrect justification and backtracks Step 2 Oracle says: take x = 1 since $(\forall y \in \mathbf{N}) (f(1) < f(y))$ (false) Corollary says: take x = 1 since f(1) < f(3)(false) $\Sigma^0_1\text{-}\text{extractor}$ evaluates incorrect justification and backtracks Step 3 Oracle says: take x = 3 since $(\forall y \in \mathbf{N}) (f(3) \le f(y))$ (false) Corollary says: take x = 3 since $f(3) \le f(7)$ (false) $\Sigma^0_1\text{-}\text{extractor}$ evaluates incorrect justification and backtracks Step 4 Oracle says: take x = 7 since $(\forall y \in \mathbf{N}) (f(7) < f(y))$ (false)

▲□▶▲圖▶▲圖▶▲圖▶ = ● のへの

Extracted programs

Classical realizability

Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} {\sf Take} & f(x) = |x - 1000| & ({\sf real \ minimum \ at \ } x = 1000) \\ {\sf and \ apply \ } \Sigma_1^0 {\rm -extraction \ to \ the \ proof \ of \ } & (\exists x \in {\sf N}) \, (f(x) \leq f(2x+1)) \end{array}$

Step 1	Oracle says: Corollary says: Σ_1^0 -extractor eva		since	$(\forall y \in \mathbf{N}) (f(0) \le f(y))$ $f(0) \le f(1)$ vation and backtracks	(false) (false)
Step 2	Corollary says:		since	$(orall y \in \mathbf{N}) (f(1) \leq f(y)) f(1) \leq f(3)$ ation and backtracks	(false) (false)
Step 3	Corollary says:		since	$egin{aligned} & (orall y \in \mathbf{N}) \left(f(3) \leq f(y) ight) \ f(3) \leq f(7) \ ext{ation and backtracks} \end{aligned}$	(false) (false)
Step 4	Oracle says:	take $x = 7$	since	$(\forall y \in \mathbf{N}) (f(7) \leq f(y))$	(false)
Step 11	Oracle says:	take <i>x</i> = 1023	since	$(\forall y \in \mathbf{N}) (f(1023) \leq f(y))$	(false)

Extracted programs

Classical realizability 00000000000000000 Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} {\sf Take} & f(x) = |x - 1000| & ({\sf real \ minimum \ at \ } x = 1000) \\ {\sf and \ apply \ } \Sigma_1^0 {\rm -extraction \ to \ the \ proof \ of \ } & (\exists x \in {\sf N}) \, (f(x) \leq f(2x+1)) \end{array}$

Step 1	Corollary says:		since	$(\forall y \in \mathbf{N}) (f(0) \le f(y))$ $f(0) \le f(1)$ sation and backtracks	(false) (false)
Step 2	Oracle says: Corollary says: Σ_1^0 -extractor eva	take $x = 1$	since	$(orall y \in \mathbf{N}) (f(1) \leq f(y)) f(1) \leq f(3)$ action and backtracks	(false) (false)
Step 3	Corollary says:		since	$(orall y \in \mathbf{N}) (f(3) \leq f(y)) f(3) \leq f(7)$ action and backtracks	(false) (false)
Step 4	Oracle says:	take <i>x</i> = 7	since	$(\forall y \in \mathbf{N}) (f(7) \leq f(y))$	(false)
Step 11	Oracle says: Corollary says:			$(\forall y \in \mathbf{N}) (f(1023) \le f(y))$ $f(1023) \le f(2047)$	(false) (<mark>true</mark>)

Extracted programs

Classical realizability 00000000000000000 Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} \mbox{Take} & f(x) = |x - 1000| & (\mbox{real minimum at } x = 1000) \\ \mbox{and apply Σ_1^0-extraction to the proof of $(\exists x \in \mathbf{N})$($f(x) \leq f(2x+1))$ } \end{array}$

Step 1	Oracle says: Corollary says: Σ_1^0 -extractor eva	take $x = 0$	since	$(\forall y \in \mathbf{N}) (f(0) \le f(y))$ $f(0) \le f(1)$ ation and backtracks	(false) (false)
Step 2	Oracle says: Corollary says: Σ_1^0 -extractor eva	take $x = 1$	since	$egin{aligned} &(orall y \in {f N}) \left(f(1) \leq f(y) ight) \ &f(1) \leq f(3) \ & ext{ation and backtracks} \end{aligned}$	(false) (false)
Step 3	Oracle says: Corollary says: Σ_1^0 -extractor eva	take $x = 3$	since	$egin{aligned} &(orall y \in \mathbf{N}) \left(f(3) \leq f(y) ight) \ &f(3) \leq f(7) \ & ext{ation and backtracks} \end{aligned}$	(false) (false)
Step 4	Oracle says:	take <i>x</i> = 7	since	$(\forall y \in \mathbf{N}) (f(7) \leq f(y))$	(false)
Step 11	Oracle says: Corollary says: Σ_1^0 -extractor eva	take $x = 1023$	since	$(\forall y \in \mathbf{N}) (f(1023) \le f(y))$ $f(1023) \le f(2047)$ ion and returns $x = 1023$	(false) (<mark>true</mark>)

Extracted programs

Classical realizability

Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} \mbox{Take} & f(x) = |x - 1000| & (\mbox{real minimum at } x = 1000) \\ \mbox{and apply Σ_1^0-extraction to the proof of $(\exists x \in \mathbf{N})$($f(x) \leq f(2x+1))$} \end{array}$

Oracle says: take x = 0 since $(\forall y \in \mathbf{N}) (f(0) \le f(y))$ Step 1 (false) Corollary says: take x = 0 since f(0) < f(1)(false) Σ_1^0 -extractor evaluates incorrect justification and backtracks Step 2 Oracle says: take x = 1 since $(\forall y \in \mathbf{N}) (f(1) < f(y))$ (false) Corollary says: take x = 1 since f(1) < f(3)(false) Σ_1^0 -extractor evaluates incorrect justification and backtracks Step 3 Oracle says: take x = 3 since $(\forall y \in \mathbf{N}) (f(3) < f(y))$ (false) Corollary says: take x = 3 since f(3) < f(7)(false) Σ_1^0 -extractor evaluates incorrect justification and backtracks Step 4 Oracle says: take x = 7 since $(\forall y \in \mathbf{N}) (f(7) < f(y))$ (false) **Step 11** Oracle says: take x = 1023 since $(\forall y \in \mathbf{N}) (f(1023) < f(y))$ (false) Corollary says: take x = 1023 since $f(1023) \le f(2047)$ (true) Σ_1^0 -extractor evaluates correct justification and returns x = 1023

Note that answer x = 1023 is correct... but not the point where f reaches its minimum

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

(1/2)

Extraction in the $\sum_{n=0}^{\infty}$ -case

Definition (Conditional refutation)

 $r_A \in \Lambda$ is a conditional refutation of the predicate A(x) if

For all $n \in \mathbb{N}$ such that $\mathscr{M} \not\models A(n)$: $r_A \overline{n} \Vdash \neg A(n)$

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

Extraction in the $\sum_{n=0}^{\infty}$ -case

Definition (Conditional refutation)

 $r_A \in \Lambda$ is a conditional refutation of the predicate A(x) if

For all $n \in \mathbb{N}$ such that $\mathscr{M} \not\models A(n)$: $r_A \overline{n} \Vdash \neg A(n)$

• Such a conditional refutation can be constructed for every predicate A(x) of 1st-order arithmetic

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

Witness extraction

Extraction in the $\sum_{n=0}^{\infty}$ -case

Definition (Conditional refutation)

 $r_A \in \Lambda$ is a conditional refutation of the predicate A(x) if

For all $n \in \mathbb{N}$ such that $\mathscr{M} \not\models A(n)$: $r_A \overline{n} \Vdash \neg A(n)$

• Such a conditional refutation can be constructed for every predicate A(x) of 1st-order arithmetic

This result is a consequence of the following

Theorem (Realizing true arithmetic formulas)[Krivine-Miquey]For every formula $A(x_1, \ldots, x_k)$ of 1st-order arithmetic, there exists a
closed proof-like term t_A such that:IfIf $\mathcal{M} \models A(n_1, \ldots, n_k)$, then
 $t_A \bar{n}_1 \cdots \bar{n}_k \parallel \vdash A(n_1, \ldots, n_k)$
(for all $n_1, \ldots, n_k \in \mathbb{N}$)

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

[M. 2009]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Extraction in the $\sum_{n=0}^{\infty}$ -case

The Kamikaze extraction method

Let

 $\bullet t_0 \Vdash (\exists x \in \mathbb{N}) A(x)$

2 r_A a conditional refutation of the predicate A(x)

Then the process

 $t_0 \star M(\lambda xy . \operatorname{print} x(r_A x y)) \cdot \diamond$

displays a correct witness after finitely many evaluation steps

2nd-order arithmetic (PA2)

Extracted programs

Classical realizability

[M. 2009]

Extraction in the $\sum_{n=0}^{\infty}$ -case

The Kamikaze extraction method

Let

 $\bullet t_0 \Vdash (\exists x \in \mathbb{N}) A(x)$

2 r_A a conditional refutation of the predicate A(x)

Then the process

 $t_0 \star M(\lambda xy . \operatorname{print} x(r_A x y)) \cdot \diamond$

displays a correct witness after finitely many evaluation steps

• **Remark:** No correctness invariant is ensured as soon as the (first) correct witness has been displayed!

After, anything may happen: crash, infinite loop, displaying incorrect witnesses, etc. (Kamikaze behavior)

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
0000000	0000000000000000	0000000000	00000000000000	000000000000000000000000000000000000000
La cal da				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Interlude: on numeration systems

• Numeration systems used in the History:

(35000 BC)	
(3100 BC)	<<< <ii< td=""></ii<>
(3000 BC)	$\square \square \square \square \square$
(1000 BC)	XLII
(300 AD)	42
	(3100 BC) (3000 BC) (1000 BC)

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
0000000	000000000000000	0000000000	00000000000000000	000000000000000000000000000000000000000
م او بر این م خرور ا				

• Numeration systems used in the History:

Tally sticks	(35000 BC)	++++ ++++ ++++ ++++ ++++ ++++ ++++
Babylonian	(3100 BC)	<<< <ii< td=""></ii<>
Egyptian	(3000 BC)	$\cap\cap\cap\cap \Pi$
Roman	(1000 BC)	XLII
Hindu-Arabic	(300 AD)	42

• Numeration systems used in Logic:

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
0000000	000000000000000	0000000000	0000000000000000	000000000000000000000000000000000000000
م او بر این م خرور ا				

• Numeration systems used in the History:

Tally sticks	(35000 BC)	++++ ++++ ++++ ++++ ++++ ++++ ++++
Babylonian	(3100 BC)	<<<< II
Egyptian	(3000 BC)	$\cap\cap\cap\cap \Pi$
Roman	(1000 BC)	XLII
Hindu-Arabic	(300 AD)	42

• Numeration systems used in Logic:

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
0000000	000000000000000	0000000000	0000000000000000	000000000000000000000000000000000000000
م او بر این م خرور ا				

• Numeration systems used in the History:

Tally sticks	(35000 BC)	++++ ++++ ++++ ++++ ++++ ++++ ++++
Babylonian	(3100 BC)	<<< <ii< td=""></ii<>
Egyptian	(3000 BC)	$\square \square \square \square \square$
Roman	(1000 BC)	XLII
Hindu-Arabic	(300 AD)	42
Tilluu-Alabic	(300 AD)	72

• Numeration systems used in Logic:

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	0000000000000000	0000000000	0000000000000000	000000000000000000000000000000000000000
م ام بر ابر م 4 مرا				

• Numeration systems used in the History:

Tally sticks	(35000 BC)	++++ ++++ ++++ ++++ ++++ ++++ ++++
Babylonian	(3100 BC)	<<<< II
Egyptian	(3000 BC)	$\cap\cap\cap\cap \Pi$
Roman	(1000 BC)	XLII
Hindu-Arabic	(300 AD)	42

• Numeration systems used in Logic:

Peano:	sssssssssssssssssssssssssssssssssss
Church:	$\lambda \times f \cdot f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f$
Krivine:	$ \begin{split} & (\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda$

Introduction 00000000	2nd-order arithmetic (PA2) 000000000000000000	Extracted programs	Classical realizability 0000000000000000	Witness extraction
Primitiv	e numerals			(1/2)

To get rid of Krivine numerals $\bar{n} = \bar{s}^n \bar{0}$ (cf paleolithic numeration) we extend the machine with the following instructions:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	00000000000	000000000000000000000000000000000000000	000000000000000

Primitive numerals

(1/2)

...

To get rid of Krivine numerals $\bar{n} = \bar{s}^n \bar{0}$ (cf paleolithic numeration) we extend the machine with the following instructions:

For every natural number n ∈ IN, an instruction n̂ ∈ K with no evaluation rule (i.e. inert constant: pure data)

Intuition: $\widehat{n} \star \pi \succ$ segmentation fault

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
0000000	000000000000000000000000000000000000000	00000000000	0000000000000000000	0000000000000000000
D · · ·				(1, 10)

(1/2)

Primitive numerals

To get rid of Krivine numerals $\bar{n} = \bar{s}^n \bar{0}$ (cf paleolithic numeration) we extend the machine with the following instructions:

For every natural number n ∈ IN, an instruction n̂ ∈ K with no evaluation rule (i.e. inert constant: pure data)

Intuition: $\widehat{n} \star \pi \succ$ segmentation fault

• An instruction $\mathsf{null} \in \mathcal{K}$ with the rules

$$\operatorname{null} \star \widehat{n} \cdot u \cdot v \quad \succ \quad \begin{cases} u \star \pi & \text{if } n = 0 \\ v \star \pi & \text{otherwise} \end{cases}$$

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
0000000	000000000000000000000000000000000000000	00000000000	000000000000000	00000000000000000000
— · · · ·				(1 (0)

(1/2)

Primitive numerals

To get rid of Krivine numerals $\bar{n} = \bar{s}^n \bar{0}$ (cf paleolithic numeration) we extend the machine with the following instructions:

For every natural number n ∈ IN, an instruction n̂ ∈ K with no evaluation rule (i.e. inert constant: pure data)

Intuition: $\widehat{n} \star \pi \succ$ segmentation fault

• An instruction $\mathsf{null} \in \mathcal{K}$ with the rules

$$\operatorname{null} \star \widehat{n} \cdot u \cdot v \quad \succ \quad \begin{cases} u \star \pi & \text{if } n = 0 \\ v \star \pi & \text{otherwise} \end{cases}$$

• Instructions $\check{f} \in \mathcal{K}$ with the rules

$$\check{f} \star \widehat{n}_1 \cdots \widehat{n}_k \cdot u \cdot \pi \succ u \star \widehat{m} \cdot \pi \qquad \text{where } m = f(n_1, \dots, n_k)$$

for all the usual arithmetic operations

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000
Primitiv	ve numerals			(2/2)

• Call-by-value implication, yet another definition:

Formulas	A, B ::= ··· $[e] \Rightarrow A$	
with the semantics:	$\ \{e\} \Rightarrow A\ = \{\widehat{n} \cdot \pi : n = e^{\mathbb{N}}, \pi \in \ A\ \}$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	0000000000000000000	00000000000	000000000000000000000000000000000000000	00000000000000000●
Primiti	ve numerals			(2/2)

• Call-by-value implication, yet another definition:

FormulasA, B::= \cdots $[e] \Rightarrow A$ with the semantics: $\|\{e\} \Rightarrow A\| = \{\widehat{n} \cdot \pi : n = e^{\mathbb{N}}, \pi \in \|A\|\}$

• Redefining the set of natural numbers:

 $\mathbb{IN}' := \{x : \forall Z (([x] \Rightarrow Z) \Rightarrow Z)\}$

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
0000000	00000000000000000	0000000000	000000000000000	00000000000000000●
Primitiv	e numerals			(2/2)

ilive numerais

• Call-by-value implication, yet another definition:

Formulas $A, B ::= \cdots | [e] \Rightarrow A$ $\|\{e\} \Rightarrow A\| = \{\widehat{n} \cdot \pi : n = e^{\mathbb{N}}, \pi \in \|A\|\}$ with the semantics:

• Redefining the set of natural numbers:

$$\mathbb{N}' := \{x : \forall Z (([x] \Rightarrow Z) \Rightarrow Z)\}$$

box := $\lambda k \cdot k x$ $box \hat{n}$ $\lambda n \cdot n \lambda x \cdot \xi x$ box $\lambda nm \cdot n \lambda x \cdot m \lambda y \cdot (\check{+}) x y$ box

$$\begin{aligned} \forall x ([x] \Rightarrow x \in \mathbb{N}') \\ n \in \mathbb{N}' \\ (\forall x \in \mathbb{N}')(s(x) \in \mathbb{N}') \\ (\forall x, y \in \mathbb{N}')(x + y \in \mathbb{N}') \end{aligned}$$

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	00000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000●
Drimiti	vo numorale			(2/2)

- Primitive numerals
 - Call-by-value implication, yet another definition:

FormulasA, B::= \cdots $[e] \Rightarrow A$ with the semantics: $\|\{e\} \Rightarrow A\| = \{\widehat{n} \cdot \pi : n = e^{\mathbb{N}}, \pi \in \|A\|\}$

• Redefining the set of natural numbers:

 (\angle / \angle)

Introduction	2nd-order arithmetic (PA2)	Extracted programs	Classical realizability	Witness extraction
00000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000●
Primitiv	ve numerals			(2/2)

Call-by-value implication, yet another definition:

Formulas $A, B ::= \cdots | [e] \Rightarrow A$ $\|\{e\} \Rightarrow A\| = \{\widehat{n} \cdot \pi : n = e^{\mathbb{N}}, \pi \in \|A\|\}$ with the semantics:

• Redefining the set of natural numbers:

 $\mathbb{IN}' := \{x : \forall Z (([x] \Rightarrow Z) \Rightarrow Z)\}$ box := $\lambda k \cdot k x$ $\parallel \vdash \quad \forall x ([x] \Rightarrow x \in \mathbb{N}')$ $box \hat{n}$ $\parallel h \in \mathbb{N}'$ $\Vdash \quad (\forall x \in \mathbb{N}')(s(x) \in \mathbb{N}')$ $\lambda n \cdot n \lambda x \cdot \xi x$ box $\lambda nm \cdot n \lambda x \cdot m \lambda y \cdot (\check{+}) x y \text{ box } \Vdash (\forall x, y \in \mathbb{N}')(x + y \in \mathbb{N}')$ $\operatorname{rec_cbv} := \lambda z_0 z_s \cdot \mathbf{Y} \lambda rx \cdot \operatorname{null} x z_0 \left(\left(\overset{\sim}{-} \right) x \widehat{1} \lambda y \cdot z_s y \left(r y \right) \right)$ $\Vdash \forall Z[Z(0) \Rightarrow \forall y([y] \Rightarrow Z(y) \Rightarrow Z(s(y))) \Rightarrow \forall x([x] \Rightarrow Z(x))]$ rec := $\lambda z_0 z_s n \cdot n \lambda x \cdot \text{rec}_c \text{bv} z_0 (\lambda y z \cdot z_s (\text{box } y) z) x$ $\parallel \forall Z [Z(0) \Rightarrow (\forall y \in \mathbb{N}')(Z(y) \Rightarrow Z(s(y))) \Rightarrow (\forall x \in \mathbb{N}')Z(x)]$

• Conclusion: $\parallel \vdash \forall x (x \in \mathbb{N}' \Leftrightarrow x \in \mathbb{N})$

 (\angle / \angle)