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The Curry-Howard correspondence

The dictionary:

Proof theory Functional programming

Proposition (formula) Data type
Proof (derivation) Program (or data)

p is a proof of the formula A p is a program of type A

A ∧ B, A ∨ B, A⇒ B A× B, A + B, A→ B

Deduction rule Typing rule
Proof checker Type checker

Cut elimination Computation
Cut-free proof Value

Proof of a lemma Sub-program
Theory (statements & proofs) Module (interface & implem.)
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Core language: the λ-calculus [Church’41]

A universal language of functions

Only three constructions: variable, abstraction, application:

Language Var. Abstraction Application
λ-calculus x λx . 〈expr〉 〈expr〉 〈expr〉
Math. x x 7→ 〈expr〉 f (〈expr〉)
LISP x (lambda (x) 〈expr〉) (〈expr〉 〈expr〉)
Python x lambda x : 〈expr〉 〈expr〉(〈expr〉)

Computation rule = β-reduction

(λx . x + x + 18)(3× 4) �β (3× 4) + (3× 4) + 18
� · · · � 42

Formally: (λx . t) u �β t{x := u}
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From proofs to programs

[∀x (Q(x)⇒ R(x))]

g

Q(x)⇒ R(x)

[∀x (P(x)⇒ Q(x))]

f

P(x)⇒ Q(x) [P(x)]

u

Q(x)

@

R(x)

@

P(x)⇒ R(x)

λu

∀x (P(x)⇒ R(x))

∀x (Q(x)⇒ R(x)) ⇒ ∀x (P(x)⇒ R(x))

λg

∀x (P(x)⇒ Q(x)) ⇒ ∀x (Q(x)⇒ R(x)) ⇒ ∀x (P(x)⇒ R(x))

λf

λf . λg . λu . g (f u)
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Significance of the Curry-Howard correspondence

Theoretical impact on:

Proof theory
Constructive mathematics
Category theory
Denotational semantics
Functional programming

Theoretical by-products:

Type theory (Martin-Löf),
Linear logic (Girard)

Applications:

Proof assistants: Coq, Agda
Program certification
Program extraction
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From intuitionistic logic to classical logic (1/2)

For a long time, the Curry-Howard correspondence was limited to
intuitionistic logic and constructive mathematics, since it was
(thought to be) incompatible with classical reasoning principles,
such as for instance:

The law of excluded middle: A ∨ ¬A
Double-negation elimination: ¬¬A⇒ A

Reductio ad absurdum: from the absurdity of ¬A, deduce A

Most De Morgan laws, e.g.: ¬(A ∧ B)⇒ ¬A ∨ ¬B
Peirce’s law: ((A⇒ B)⇒ A)⇒ A

The full axiom of choice

However, a lot of interesting mathematics can be formalized in
intuitionistic logic (i.e. without using classical reasoning)
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From intuitionistic logic to classical logic (2/2)

In 1990, Griffin’s discovered a connection between classical reasoning
and control operators (call/cc)

call/cc : ((A⇒ B)⇒ A)⇒ A (Peirce’s law)

A new paradigm for the Curry-Howard correspondence:

Classical reasoning = programming with continuations
= computing by trial/error

Many classical λ-calculi:

λµ [Parigot 1992]
λ-sym [Barbanera & Berardi 1996]
λc [Krivine 1994]
λ̄µµ̃ [Curien & Herbelin 2000]

Classical realizability [Krivine ’00, ’03, ’09]
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What is classical realizability?

An operational semantics for the programs extracted from classical
proofs, formulated using the tools of model theory

Based on the connection between Peirce’s law and call/cc

Allows to predict the behavior of classical programs

Interprets the Axiom of Dependent Choices (DC) [K. 2003]

Initially designed for PA2, but extends to:

Higher-order arithmetic (PAω)

Zermelo-Fraenkel set theory (ZF) [K. 2001, 2012]

The calculus of inductive constructions (CIC) [M. 2007]
(with classical logic in Prop)

Deep connections with Cohen forcing [K. 2011]

 can be used to define new models of PA2/ZF [K. 2012]
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The language of (minimal) second-order logic

Second-order logic deals with two kinds of objects:

1st-order objects = individuals (i.e. basic objects of the theory)

2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms

Formulas

e, e′ ::= x | f (e1, . . . , ek)

A,B ::= X (e1, . . . , ek) | A⇒ B
| ∀x A | ∀X A

Two kinds of variables

1st-order variables: x , y , z , . . .
2nd-order variables: X , Y , Z , . . . of all arities k ≥ 0

2nd-order arithmetic: individuals represent natural numbers
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First-order terms (1/2)

Defined from a first-order signature Σ (as usual):

First-order terms e, e′ ::= x | f (e1, . . . , ek)

f ranges over k-ary function symbols in Σ
constant symbol = function symbol of arity 0

In what follows we assume that the signature Σ contains:

a constant symbol 0 (zero)
a unary function symbol s (successor)
binary function symbols +, ×, − (truncated subtraction)

function symbols for all primitive recursive functions (more generally)

Peano numerals: s(· · · s︸ ︷︷ ︸
n

(0) · · · ) written n (n ∈ N)

First-order substitution written: e{x := e′}
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First-order terms (2/2)

Each k-ary function symbol f is interpreted by the corresponding
primitive recursive function, written

f N : Nk → N

The constant symbol 0 is interpreted by 0N = 0 (∈ N)

The denotation in N (i.e. the value) of a closed first-order term e
is written eN. For instance:

0N = 0
4N = (s(s(s(s(0)))))N = 4

((2− 3) + s(3× 4))N = 13
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Formulas (1/2)

Formulas of minimal second-order logic

Formulas A,B ::= X (e1, . . . , ek) | A⇒ B
| ∀x A | ∀X A

only based on implication and 1st/2nd-order universal quantification

Implication is right-associative:

A1 ⇒ · · · ⇒ An ⇒ B means A1 ⇒ (· · · ⇒ (An ⇒ B) · · · )

The above formula is equivalent to (A1 ∧ · · · ∧ An)⇒ B
but without using conjunction

Two kinds of substitutions:

1st-order substitution, written A{x := e} (capture avoiding)

2nd-order substitution, written A{X := P} (postponed)
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Formulas (2/2)

Other connectives/quantifiers defined via second-order encodings:

⊥ ≡ ∀Z Z
¬A ≡ A⇒ ⊥

A ∧ B ≡ ∀Z ((A⇒ B ⇒ Z)⇒ Z)
A ∨ B ≡ ∀Z ((A⇒ Z)⇒ (B ⇒ Z)⇒ Z)

A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A)

∃x A(x) ≡ ∀Z (∀x (A(x)⇒ Z)⇒ Z)
∃X A(X ) ≡ ∀Z (∀X (A(X )⇒ Z)⇒ Z)

e1 = e2 ≡ ∀Z (Z(e1)⇒ Z(e2))

(absurdity)
(negation)

(conjunction)
(disjunction)

(equivalence)

(1st-order ∃)
(2nd-order ∃)

(Leibniz equality)

We could also have used the De Morgan laws

A ∧ B ≡ ¬(A⇒ B ⇒ ⊥) ∃x A(x) ≡ ¬∀x ¬A(x)

A ∨ B ≡ ¬A⇒ ¬B ⇒ ⊥ ∃X A(x) ≡ ¬∀X ¬A(X )

that are classically equivalent
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A ∨ B ≡ ¬A⇒ ¬B ⇒ ⊥ ∃X A(x) ≡ ¬∀X ¬A(X )

that are classically equivalent
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Predicates

Concrete relations are represented using predicates (syntactic sugar)

Predicates P,Q ::= x̂1 · · · x̂kA0 (of arity k)

Definition (Predicate application and 2nd-order substitution)

1 P(e1, . . . , ek) is the formula defined by

P(e1, . . . , ek) ≡ A0{x1 := e1, . . . , xk := ek}

where P ≡ x̂1 · · · x̂kA0, and where e1, . . . , ek are k first-order terms

2 2nd-order substitution A{X := P} (where X and P are of the same arity k)

consists to replace in the formula A every atomic sub-formula of the form

X (e1, . . . , ek) by the formula P(e1, . . . , ek)

Note: Every k-ary 2nd-order variable X can be seen as a predicate:

X ≡ x̂1 · · · x̂kX (x1, . . . , xk)
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Unary predicates as sets

Unary predicates represent sets of individuals

Syntactic sugar: {x : A} ≡ x̂A, e ∈ P ≡ P(e)

Example: The set N of Dedekind numerals

N ≡ {x : ∀Z (0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z )⇒ x ∈ Z}

Relativized quantifications:

(∀x ∈P)A(x) ≡ ∀x (x ∈ P ⇒ A(x))

(∃x ∈P)A(x) ≡ ∀Z (∀x (x ∈ P ⇒ A(x)⇒ Z)⇒ Z)
⇔ ∃x (x ∈ P ∧ A(x))

Inclusion and extensional equality:

P ⊆ Q ≡ ∀x (x ∈ P ⇒ x ∈ Q)
P = Q ≡ ∀x (x ∈ P ⇔ x ∈ Q)

Set constructors: P ∪ Q ≡ {x : x ∈ P ∨ x ∈ Q} (etc.)
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Sequents

Definition (Sequent)

A sequent is a pair of the form

A1, . . . ,An ` A (n ≥ 0)

where A1, . . . ,An,A are formulas

A1, . . . ,An are the hypotheses, which form the context

A is the thesis

` is the entailment symbol (that reads: ‘entails’)

Sequents are usually written Γ ` A (Γ finite list of formulas)

Γ ` A means: “under the hypotheses in Γ, the formula A holds”

Notations FV (Γ), Γ{x := t} extended to finite lists Γ
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Rules of inference & systems of deduction

Definition (Rule of inference)

A rule of inference is a pair formed by a finite set of sequents
{Γ1 ` A1, . . . , Γn ` An} and a sequent Γ ` A, usually written

Γ1 ` A1 · · · Γn ` An

Γ ` A

Γ1 ` A1, . . . , Γn ` An are the premises of the rule (n ≥ 0)

Γ ` A is the conclusion of the rule

Definition (System of deduction)

A system of deduction is a set of inference rules
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Natural deduction for classical 2nd-order logic (NK2)

Here, we work in system NK2, whose deduction rules are:

(Axiom) Γ ` A
if A∈Γ

(⇒-intro,elim)

Γ,A ` B

Γ ` A⇒ B
Γ ` A⇒ B Γ ` A

Γ ` B

(∀1-intro,elim)
Γ ` A

Γ ` ∀x A
if x /∈FV (Γ)

Γ ` ∀x A
Γ ` A{x := e}

(∀2-intro,elim)
Γ ` A

Γ ` ∀X A
if X /∈FV (Γ)

Γ ` ∀X A
Γ ` A{X := P}

(Peirce’s law) Γ ` ((A⇒ B)⇒ A)⇒ A

System NK2 contains the usual rules of intuitionistic 2nd-order logic
(NJ2), plus Peirce’s law, for classical reasoning
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Derivations

Deduction rules are the elementary bricks of reasoning. They can be
assembled to form derivations (finite sequent-labelled trees)

Example: derivation of the syllogism Barbara

Γ3 ` ∀x (Q(x)⇒ R(x))
(axiom)

Γ3 ` Q(x)⇒ R(x)
(∀1-elim)

Γ3 ` ∀x (P(x)⇒ Q(x))
(axiom)

Γ3 ` P(x)⇒ Q(x)
(∀1-elim)

Γ3 ` P(x)
(axiom)

Γ3 ` Q(x)
(⇒-elim)

Γ3 ` R(x)
(⇒-elim)

Γ2 ` P(x)⇒ R(x)
(⇒-intro)

Γ2 ` ∀x (P(x)⇒ R(x))
(∀1-intro)

Γ1 ` ∀x (Q(x)⇒ R(x))⇒ ∀x (P(x)⇒ R(x))
(⇒-intro)

` ∀x (P(x)⇒ Q(x))⇒ ∀x (Q(x)⇒ R(x))⇒ ∀x (P(x)⇒ R(x))
(⇒-intro)

with Γ1 ≡ ∀x (P(x)⇒ Q(x)), Γ2 ≡ Γ1, ∀x (Q(x)⇒ R(x)), Γ3 ≡ Γ2,P(x)

A sequent Γ ` A is derivable when it appears as the conclusion of a
derivation. A formula A is derivable when the sequent ` A is

Remark: One also uses proof/provable for derivation/derivable
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Expressiveness

The 8 deduction rules of system NK2 allow us to derive the usual rules of
logic (for all connectives & quantifiers):

Introduction/elimination rules for defined connectives/quantifiers:

⊥ ⇒ A, A⇒ B ⇒ A ∧ B, A ∧ B ⇒ A, A ∧ B ⇒ B,

A⇒ A ∨ B, B ⇒ A ∨ B, (A⇒ C)⇒ (B ⇒ C)⇒ A ∨ B ⇒ C ,

A(e)⇒ ∃x A(x), ∀x (A(x)⇒ C)⇒ ∃x A(x)⇒ C ,

A(P)⇒ ∃X A(X ), ∀X (A(X )⇒ C)⇒ ∃X A(X )⇒ C ,

e = e, e1 = e2 ⇒ e2 = e1, e1 = e2 ⇒ e2 = e3 ⇒ e1 = e3, etc.

Classical reasoning + De Morgan laws:

A ∨ ¬A

¬¬A ⇔ A ¬(A ∧ B) ⇔ ¬A ∨ ¬B
(A⇒ B) ⇔ (¬B ⇒ ¬A) ¬∀x A(x) ⇔ ∃x ¬A(x)
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Axioms of classical 2nd-order arithmetic (PA2)

We have defined (classical) 2nd-order logic (NK2)
To get 2nd-order arithmetic (PA2), we add the following axioms:

Defining axioms of primitive recursive function symbols:

∀x (x + 0 = x) ∀x (x × 0 = 0)
∀x ∀y (x + s(y) = s(x + y)) ∀x ∀y (x × s(y) = x × y + x)

∀x (x − 0 = x)
∀y (0− y = 0) etc.
∀x ∀y (s(x)− s(y) = x − y)

Peano axioms:

∀x ¬(s(x) = 0) ∀x ∀y (s(x) = s(y)⇒ x = y)

Technically, these axioms are aggregated to the deduction system as new
inference rules of the form

Γ ` ∀x (x + 0 = x) (etc.)
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The problem of induction (1/2)

The above presentation of PA2 contains no induction axiom

The reason is that the property of being a natural number is
definable in 2nd-order logic, via the set/predicate:

N ≡
{
x : ∀Z (Z (0) ⇒ ∀y (Z (y)⇒ Z (s(y))) ⇒ Z (x))

}
So we can replace 1st-order quantifications by their versions
relativized to N (arithmetic quantifications):

(∀x ∈N)A(x) ≡ ∀x (x ∈ N⇒ A(x))

(∃x ∈N)A(x) ≡ ∀Z ((∀x ∈N) (A(x)⇒ Z ) ⇒ Z )
⇔ ∃x (x ∈ N ∧ A(x))
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The problem of induction (2/2)

Through this process of relativization, induction is derivable:

Relativized principle of induction

∀Z (Z (0) ⇒ (∀x ∈N) (Z (x)⇒ Z (s(x))) ⇒ (∀x ∈N)Z (x))

In practice, one works with relativized quantification the same way
as with unrelativized ones

However, we need to check that the set/predicate N is closed under
all the operations of the signature Σ:

Proposition (Totality of arithmetic expressions)

For each arithmetic expression e(x1, . . . , xk), the formula

Total(e) ≡ (∀x1, . . . , xk ∈N) e(x1, . . . , xk) ∈ N

is derivable in system NK2 (without an axiom)
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Plan

1 Introduction

2 Second-order arithmetic (PA2)

3 Extracted programs

4 The classical realizability interpretation

5 Witness extraction
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The λc-calculus

Terms, stacks and processes

Terms

Stacks

Processes

t, u ::= x | λx . t | tu | cc | stop | kπ

π, π′ ::= � | t · π

p, q ::= t ? π

(t closed)

(t closed)

A λ-calculus with two kinds of constants:

Instructions cc (call/cc) and stop
Continuation constants kπ, one for every stack π (generated by cc)

Notations:
Λ = set of closed λc -terms
Π = set of stacks (closed)

Λ ? Π = set of processes (closed)
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The Krivine Abstract Machine (KAM) (1/2)

The set of processes (Λ ? Π) is equipped with a preorder of
evaluation p � p′, that is generated from the following rules:

Krivine Abstract Machine (KAM)

Push

Grab

Save

Restore

tu ? π � t ? u · π
λx . t ? u · π � t{x := u} ? π

cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π

(+ reflexivity & transitivity)

Extensible machinery: can add extra instructions and rules
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The Krivine Abstract Machine (KAM) (2/2)

Rules Push and Grab implement weak head β-reduction:

Push
Grab

tu ? π � t ? u · π
λx . t ? u · π � t{x := u} ? π

Example: (λxy . t) u v ? π � λxy . t ? u · v · π
� t{x := u}{y := v} ? π

Rules Save and Restore implement backtracking:

Save
Restore

cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π

Instruction cc most often used in the pattern

cc (λk . t) ? π � cc ? (λk . t) · π
� (λk . t) ? kπ · π
� t{k := kπ} ? π

Instruction stop has no evaluation rule: stop ? π 6�
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A type system for 2nd-order logic: λNK2 (1/2)

Aim: Turning the deduction system NK2 into a type system
written λNK2, where:

Formulas are used as types

The computational contents of proofs is given by λc -terms

Typing judgments of the form

x1 : A1, . . . , xn : An︸ ︷︷ ︸
typing context Γ

` t : A

= sequent decorated with computational information

Note: We only use proof-like terms, that is: λc -terms without
continuation constants (kπ) and without the instruction stop
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A type system for 2nd-order logic: λNK2 (2/2)

Typing rules of system λNK2

Γ ` x : A
if (x :A)∈Γ

Γ, x : A ` t : B

Γ ` λx . t : A⇒ B
Γ ` t : A⇒ B Γ ` u : A

Γ ` tu : B

Γ ` t : A
Γ ` t : ∀x A

if x /∈FV (Γ)
Γ ` t : ∀x A

Γ ` t : A{x := e}

Γ ` t : A
Γ ` t : ∀X A

if X /∈FV (Γ)
Γ ` t : ∀X A

Γ ` t : A{X := P}

Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Remarks:

∀ interpreted uniformly (intersection type)
typing derivations defined the same way as logical derivations
type checking/inference undecidable
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Relation between deduction (NK2) and typing (λNK2)

Each typing context Γ ≡ x1 : A1, . . . , xn : An can be turned
into a logical context Γ∗ ≡ A1, . . . ,An

Each typing judgment Γ ` t : A can be turned into a sequent:

(Γ ` t : A)∗ ≡ Γ∗ ` A

Each typing derivation d is turned into a logical derivation d∗

Equivalence between systems NK2 and λNK2

1 If d is a typing derivation of Γ ` t : A in system λNK2,
then d∗ is a logical derivation of Γ∗ ` A in system NK2

2 Every logical derivation d of a sequent Γ ` A in system NK2
comes from a typing derivation d0 of a judgment of the form
Γ0 ` t : A in system λNK2 (with Γ∗0 ≡ Γ and d∗0 ≡ d)

The typing derivation d0 is unique, up to the names of variables

The term t is called the program extracted from the derivation d
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Example: extracting a program from a proof

Example: derivation of the syllogism Barbara

Γ3 ` ∀x (Q(x)⇒ R(x))
(axiom)

Γ3 ` Q(x)⇒ R(x)
(∀1-elim)

Γ3 ` ∀x (P(x)⇒ Q(x))
(axiom)

Γ3 ` P(x)⇒ Q(x)
(∀1-elim)

Γ3 ` P(x)
(axiom)

Γ3 ` Q(x)
(⇒-elim)

Γ3 ` R(x)
(⇒-elim)

Γ2 ` P(x)⇒ R(x)
(⇒-intro)

Γ2 ` ∀x (P(x)⇒ R(x))
(∀1-intro)

Γ1 ` ∀x (Q(x)⇒ R(x))⇒ ∀x (P(x)⇒ R(x))
(⇒-intro)

` ∀x (P(x)⇒ Q(x))⇒ ∀x (Q(x)⇒ R(x))⇒ ∀x (P(x)⇒ R(x))
(⇒-intro)

with Γ1 ≡ ∀x (P(x)⇒ Q(x)), Γ2 ≡ Γ1, ∀x (Q(x)⇒ R(x)), Γ3 ≡ Γ2,P(x)

Extracted program is: λf . λg . λz . f (g z) (composition of functions)
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Typing examples (1/2)

Pairing construct and projections associated to conjunction A ∧ B
(= Cartesian product):

〈t, u〉 ≡ λf . f t u : A ∧ B (if t : A, u : B)
pair ≡ λxy . 〈x , y〉 : ∀X ∀Y (X ⇒ Y ⇒ X ∧ Y )
fst ≡ λz . z (λxy . x) : ∀X ∀Y (X ∧ Y ⇒ X )
snd ≡ λz . z (λxy . y) : ∀X ∀Y (X ∧ Y ⇒ Y )

Injections associated to disjunction A ∨ B (= direct sum):

left ≡ λxfg . f x : ∀X ∀Y (X ⇒ X ∨ Y )
right ≡ λyfg . g y : ∀X ∀Y (Y ⇒ X ∨ Y )

Reflexivity, symmetry and transitivity of equality:

eq refl ≡ λz . z : ∀x (x = x)
eq sym ≡ λz . z (λu . u) : ∀x ∀y (x = y ⇒ y = x)

eq trans ≡ λxyz . y (x z) : ∀x ∀y ∀z (x = y ⇒ y = z ⇒ x = z)
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Typing examples (2/2)

Recall: injections associated to disjunction A ∨ B:

left ≡ λxfg . f x : ∀X ∀Y (X ⇒ X ∨ Y )
right ≡ λyfg . g y : ∀X ∀Y (Y ⇒ X ∨ Y )

Computational contents of the law of excluded middle?

EM ≡

cc (λk . right (λx . k (left x)))

: ∀X (X ∨ ¬X )

Double-negation elimination & De Morgan laws:

λz . cc (λk . z k) : ∀X (¬¬X ⇒ X )

λzy . z (λx . yx) : ∃x A(x) ⇒ ¬∀x ¬A(x)
λzy . cc (λk . z (λx . k (y x))) : ¬∀x ¬A(x) ⇒ ∃x A(x)
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Representing natural numbers

Encoding zero and successor:

0 ≡ λzf . z : 0 ∈ N

s ≡ λnzf . f (n z f ) : (∀x ∈N) s(x) ∈ N

Each natural number n ∈ N is thus represented by the program

n ≡ sn 0 ≡ s (· · · (s︸ ︷︷ ︸
n

0) · · · ) : n ∈ N

(= Krivine numeral n)

Intuitively, the program n behaves as an iterator:

0 ? u0 · u1 · π � u0 ? π

n + 1 ? u0 · u1 · π � u1 ? (n u0 u1) · π
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Classical realizability: principles

Intuitions:

term = “proof” / stack = “counter-proof”
process = “contradiction” (slogan: never trust a classical realizer!)

Classical realizability model parameterized by a pole ⊥⊥
= set of processes closed under anti-evaluation

Each formula A is interpreted as two sets:

A set of stacks ‖A‖ (falsity value)
A set of terms |A| (truth value)

Falsity value ‖A‖ defined by induction on A (negative interpretation)

Truth value |A| defined by orthogonality:

|A| = ‖A‖⊥⊥ = {t ∈ Λ : ∀π ∈ ‖A‖ t ? π ∈ ⊥⊥}
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Classical realizability: principles

Intuitions:

term = “proof” / stack = “counter-proof”
process = “contradiction” (slogan: never trust a classical realizer!)

Classical realizability model parameterized by a pole ⊥⊥
= set of processes closed under anti-evaluation

Each formula A is interpreted as two sets:

A set of stacks ‖A‖ (falsity value)
A set of terms |A| (truth value)

Falsity value ‖A‖ defined by induction on A (negative interpretation)

Truth value |A| defined by orthogonality:

|A| = ‖A‖⊥⊥ = {t ∈ Λ : ∀π ∈ ‖A‖ t ? π ∈ ⊥⊥}
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Architecture of the realizability model

The realizability model M⊥⊥ is defined from:

The full standard model M of PA2: the ground model
(but we could take any model M of PA2 as well)

A saturated set of processes ⊥⊥ ⊆ Λ ? Π (the pole)

Architecture:

First-order terms/variables interpreted as natural numbers n ∈ N
Formulas interpreted as falsity values S ∈ P(Π)

k-ary second-order variables (and k-ary predicates) interpreted as
falsity functions F : Nk → P(Π).

Formulas with parameters A,B ::= · · · | Ḟ (e1, . . . , ek)

Add a predicate constant Ḟ for every falsity function F : Nk → P(Π)
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Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

Falsity value ‖A‖ defined by induction on A:

‖Ḟ (e1, . . . , ek)‖ = F (eN1 , . . . , e
N
k )

‖A⇒ B‖ = |A| · ‖B‖ = {t · π : t ∈ |A|, π ∈ ‖B‖}

‖∀x A‖ =
⋃
n∈N

‖A{x := n}‖

‖∀X A‖ =
⋃

F :Nn→P(Π)

‖A{X := Ḟ}‖

Truth value |A| defined by orthogonality:

|A| = ‖A‖⊥⊥ = {t ∈ Λ : ∀π ∈ ‖A‖ t ? π ∈ ⊥⊥}
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The realizability relation

Falsity value ‖A‖ and truth value |A| depend on the pole ⊥⊥
 write them (sometimes) ‖A‖⊥⊥ and |A|⊥⊥ to recall the dependency

Realizability relations

t 
 A ≡ t ∈ |A|⊥⊥
t � A ≡ ∀⊥⊥ t ∈ |A|⊥⊥

(Realizability w.r.t. ⊥⊥)

(Universal realizability)
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From computation to realizability (1/2)

Fundamental idea: The computational behavior of a term determines
the formula(s) it realizes:

Example 1: A closed term t is identity-like if:

t ? u · π � u ? π for all u ∈ Λ, π ∈ Π

Proposition

If t is identity-like, then t � ∀X (X ⇒ X )

Proof: Exercise! (Remark: converse implication holds – exercise!)

Examples of identity-like terms:

λx . x , (λx . x) (λx . x), etc.
λx . cc (λk . x), λx . cc (λk . k x), λx . cc (λk . k x ω), etc.
λx . quote x λn . unquote n (λz . z)
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From computation to realizability (2/2)

Example 2: Control operators:

cc ? t · π � t ? kπ · π
kπ ? t · π′ � t ? π

“Typing” kπ: kπ ? t · π′ � t ? π

Lemma

If π ∈ ‖A‖, then kπ 
 A⇒ B (B any)

Proof: Exercise

“Typing” cc: cc ? t · π � t ? kπ · π

Proposition (Realizing Peirce’s law)

cc � ((A⇒ B)⇒ A)⇒ A

Proof: Exercise
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Anatomy of the model (1/2)

Denotation of universal quantification:

Falsity value: ‖∀x A‖ =
⋃
n∈N

‖A{x := n}‖ (by definition)

Truth value: |∀x A| =
⋂
n∈N

|A{x := n}| (by orthogonality)

(and similarly for 2nd-order universal quantification)

Denotation of implication:

Falsity value: ‖A⇒ B‖ = |A| · ‖B‖ (by definition)

Truth value: |A⇒ B| ⊆ |A| → |B| (by orthogonality)

writing |A| → |B| = {t ∈ Λ : ∀u ∈ |A| tu ∈ |B|} (realizability arrow)
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Anatomy of the model (2/2)

Degenerate case: ⊥⊥ = ∅

Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

In the case where ⊥⊥ = 0, for every closed formula A:

|A| =

{
Λ if M |= A

∅ if M 6|= A

Non degenerate cases: ⊥⊥ 6= ∅

Every truth value |A| is inhabited:

If t0 ? π0 ∈ ⊥⊥, then kπ0t0 ∈ |A| for all A (paraproof)

We shall only consider realizers that are proof-like terms
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Adequacy (1/2)

Aim: Prove the theorem of adequacy

t : A (in the sense of λNK2) implies t 
 A (in the sense of realizability)

Closing typing judgments x1 : A1, . . . , xn : An ` t : A

We close logical objects (1st-order terms, formulas, predicates) using
semantic objects (natural numbers, falsity values, falsity functions)

We close proof-terms using realizers

Definition (Valuations)

1 A valuation is a function ρ such that

ρ(x) ∈ N for each 1st-order variable x
ρ(X ) : Nk → P(Π) for each 2nd-order variable X of arity k

2 Closure of A with ρ written A[ρ] (formula with parameters)
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Adequacy (2/2)

Definition (Adequate judgment, adequate rule)

Given a fixed pole ⊥⊥:

1 A judgment x1 : A1, . . . , xn : An ` t : A is adequate if for every
valuation ρ and for all u1 
 A1[ρ], . . . , un 
 An[ρ] we have:

t{x1 := u1, . . . , xn := un} 
 A[ρ]

2 A typing rule is adequate if it preserves the property of adequacy
(from the premises to the conclusion of the rule)

Theorem

1 All typing rules of λNK2 are adequate

2 All derivable judgments of λNK2 are adequate

Corollary: If ` t : A (A closed formula), then t � A
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Extending adequacy to subtyping

Definition (Adequate subtyping judgment)

Judgment A ≤ B adequate ≡ ‖B[ρ]‖ ⊆ ‖A[ρ]‖ (for all valuations)

Remark: Implies |A[ρ]| ⊆ |B[ρ]| (for all ρ), but strictly stronger

Some adequate typing/subtyping rules:

A ≤ A

A ≤ B B ≤ C

A ≤ C

Γ ` t : A A ≤ B

Γ ` t : B

∀x A ≤ A{x := e} ∀X A ≤ A{X := P}

A ≤ B

A ≤ ∀x B
x /∈FV (A)

A ≤ B

A ≤ ∀X B
X /∈FV (A)

A′ ≤ A B ≤ B′

A⇒ B ≤ A′ ⇒ B′

∀x (A⇒ B) ≤ A⇒ ∀x B
x /∈FV (A)

∀X (A⇒ B) ≤ A⇒ ∀X B
X /∈FV (A)

Example: ∀X ∀Y (((X ⇒ Y )⇒ X )⇒ X )︸ ︷︷ ︸
Peirce’s law

≤ ∀X (¬¬X ⇒ X )︸ ︷︷ ︸
DNE
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Realizing equalities

Equality between individuals defined by

e1 = e2 ≡ ∀Z (Z (e1)⇒ Z (e2)) (Leibniz equality)

Denotation of Leibniz equality

Given two closed first-order terms e1, e2 (and a pole ⊥⊥)

‖e1 = e2‖ =

{
‖1‖ = {t · π : (t ? π) ∈ ⊥⊥} if Je1K = Je2K
‖> ⇒ ⊥‖ = Λ · Π if Je1K 6= Je2K

writing 1 ≡ ∀Z (Z ⇒ Z) and > ≡ ∅̇

Intuitions:

A realizer of a true equality (in the ground model M ) behaves as the
identity function λz . z

A realizer of a false equality (in the ground model M ) behaves as a
point of backtrack (breakpoint)
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Realizing axioms

Corollary 1 (Realizing true equations)

If M |= ∀~x (e1(~x) = e2(~x)) (truth in the ground model)

then I ≡ λz . z � ∀~x (e1(~x) = e2(~x)) (universal realizability)

Corollary 2

All defining equations of primitive recursive function symbols
(+, −, ×, etc.) are universally realized by I ≡ λz . z

Corollary 3 (Realizing Peano axioms)

λz . z I � ∀x ¬(s(x) = 0)
I � ∀x ∀y (s(x) = s(y)⇒ x = y)

Theorem: If PA2 ` A, then θ � A for some proof-like term θ
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Provability, universal realizability and truth

From what precedes:

1 A provable ⇒ A universally realized (by a proof-like term)

2 A universally realized ⇒ A true (in the full standard model)

 Universal realizability: an intermediate notion
between provability and truth

Beware!

Intuitionistic proofs of A ⊆ Classical proofs of A

∩ ∩

Intuitionistic realizers of A
*
+

Classical realizers of A
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Plan

1 Introduction

2 Second-order arithmetic (PA2)

3 Extracted programs

4 The classical realizability interpretation

5 Witness extraction
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The problem of witness extraction

Problem: Extract a witness from a universal realizer (or a proof)

t0 � (∃x ∈N)A(x)

i.e. some n ∈ N such that A(n) is true

This is not always possible!

t0 � (∃x ∈N) ((x = 1 ∧ C ) ∨ (x = 0 ∧ ¬C ))

(C = Continuum hypothesis, Goldbach’s conjecture, etc.)

Two possible compromises:

Intuitionistic logic: restrict the shape of the realizer t0

(by only keeping intuitionistic reasoning principles)

Classical logic: restrict the shape of the formula A(x)

(typically: ∆0
0-formulas)
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Storage operators (1/2)

The call-by-value implication:

Formulas A,B ::= · · · | {e} ⇒ A

with the semantics: ‖{e} ⇒ A‖ = {n̄ · π : n = eN, π ∈ ‖A‖}

From the definition: e ∈ N⇒ A ≤ {e} ⇒ A

so that: I � ∀x ∀Z [(x ∈ N⇒ Z)⇒ ({x} ⇒ Z)] (direct implication)

Definition (Storage operator)

A storage operator is a closed proof-like term M such that:

M � ∀x ∀Z [({x} ⇒ Z)⇒ (x ∈ N⇒ Z)] (converse implication)

Theorem (Existence)

Storage operators exist, e.g.: M := λfn . n f (λhx . h (s̄ x)) 0̄
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M � ∀x ∀Z [({x} ⇒ Z)⇒ (x ∈ N⇒ Z)] (converse implication)

Theorem (Existence)

Storage operators exist, e.g.: M := λfn . n f (λhx . h (s̄ x)) 0̄
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Storage operators (2/2)

Intuitively, a storage operator

M � ∀x ∀Z [({x} ⇒ Z )⇒ (x ∈ N⇒ Z )]

is a proof-like term that is intended to be applied to

a function f that only accepts values (i.e. intuitionistic integers)

a classical integer t 
 n ∈ N (n arbitrary)

and that evaluates (or ‘smoothes’) the classical integer t into a
value of the form n̄ before passing this value to f

By subtyping, we also have:

M � ∀Z [∀x ({x} ⇒ Z (x)) ⇒ (∀x ∈N)Z (x)]

This means that if a property Z (x) holds for all intuitionistic
integers, then it holds for all classical integers too

Conclusion: e ∈ N⇒ A and {e} ⇒ A interchangeable
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Computing with storage operators

Given a k-ary function symbol f , we let:

Total(f ) := (∀x1 ∈N) · · · (∀xk ∈N)(f (x1, . . . , xk) ∈ N)

Comput(f ) := ∀x1 · · · ∀xk ∀Z [{x1} ⇒ · · · ⇒ {xk} ⇒
({f (x1, . . . , xk)} ⇒ Z)⇒ Z ]

Theorem (Specification of the formula Comput(f ))

For all t ∈ Λ, the following assertions are equivalent:

1 t � Comput(f )

2 t computes f : for all (n1, . . . , nk) ∈ Nk , u ∈ Λ, π ∈ Π:

t ? n1 · · · nk · u · π � u ? f (n1, . . . , nk) · π

Using a storage operator M, we can build proof-like terms:

ξk � Total(f ) ⇒ Comput(f )
ξ′k � Comput(f ) ⇒ Total(f )



Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

Computing with storage operators

Given a k-ary function symbol f , we let:

Total(f ) := (∀x1 ∈N) · · · (∀xk ∈N)(f (x1, . . . , xk) ∈ N)

Comput(f ) := ∀x1 · · · ∀xk ∀Z [{x1} ⇒ · · · ⇒ {xk} ⇒
({f (x1, . . . , xk)} ⇒ Z)⇒ Z ]

Theorem (Specification of the formula Comput(f ))

For all t ∈ Λ, the following assertions are equivalent:

1 t � Comput(f )

2 t computes f : for all (n1, . . . , nk) ∈ Nk , u ∈ Λ, π ∈ Π:

t ? n1 · · · nk · u · π � u ? f (n1, . . . , nk) · π

Using a storage operator M, we can build proof-like terms:

ξk � Total(f ) ⇒ Comput(f )
ξ′k � Comput(f ) ⇒ Total(f )



Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

Computing with storage operators

Given a k-ary function symbol f , we let:

Total(f ) := (∀x1 ∈N) · · · (∀xk ∈N)(f (x1, . . . , xk) ∈ N)

Comput(f ) := ∀x1 · · · ∀xk ∀Z [{x1} ⇒ · · · ⇒ {xk} ⇒
({f (x1, . . . , xk)} ⇒ Z)⇒ Z ]

Theorem (Specification of the formula Comput(f ))

For all t ∈ Λ, the following assertions are equivalent:

1 t � Comput(f )

2 t computes f : for all (n1, . . . , nk) ∈ Nk , u ∈ Λ, π ∈ Π:

t ? n1 · · · nk · u · π � u ? f (n1, . . . , nk) · π

Using a storage operator M, we can build proof-like terms:

ξk � Total(f ) ⇒ Comput(f )
ξ′k � Comput(f ) ⇒ Total(f )



Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

The naive extraction method

A classical realizer t0 � (∃x ∈N)A(x) always evaluates to a
pair witness/justification:

Naive extraction

If t0 � (∃x ∈N)A(x), then there are n ∈ N and u ∈ Λ such that:

t0 ?M(λxy . stop x y) · � � stop ? n · u · �

(where u 
 A(n) w.r.t. the particular pole ⊥⊥... needed to prove the property)

But n ∈ N might be a false witness because the justification
u 
 A(n) is cheating! (u might contain hidden continuations)

In the case where t0 comes from an intuitionistic proof,
extracted witness n ∈ N is always correct
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Extraction in the Σ0
1-case

Extraction in the Σ0
1-case

(+ display intermediate results)

If t0 � (∃x ∈N)(f (x) = 0), then

t0 ?M(λxy .

print x

y (stop x)) · � � stop ? n · �

for some n ∈ N such that f (n) = 0

Storage operator M used to evaluate 1st component (x)

2nd component (y) used as a breakpoint
(Relies on the particular structure of equality realizers)

Holds independently from the instruction set

Supports any representation of numerals
(One has to implement the storage operator M accordingly)



Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

Extraction in the Σ0
1-case

Extraction in the Σ0
1-case (+ display intermediate results)

If t0 � (∃x ∈N)(f (x) = 0), then

t0 ?M(λxy . print x y (stop x)) · � � stop ? n · �

for some n ∈ N such that f (n) = 0

Storage operator M used to evaluate 1st component (x)

2nd component (y) used as a breakpoint
(Relies on the particular structure of equality realizers)

Holds independently from the instruction set

Supports any representation of numerals
(One has to implement the storage operator M accordingly)



Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

Example: the minimum principle

Given a unary function symbol f , write:

Total(f ) := (∀x ∈N)(f (x) ∈ N)

x ≤ y := x − y = 0

(totality predicate)

(truncated subtraction)

Theorem (Minimum principle – MinP)

PA2 ` Total(f ) ⇒ (∃x ∈N) (∀y ∈N) (f (x) ≤ f (y))︸ ︷︷ ︸
undecidable

Proof. Reductio ad absurdum + course by value induction

The minimum principle is not intuitionistically provable (oracle)

We cannot apply the Σ0
1-extraction technique to the above proof

(applied to a totality proof of f ), since the conclusion is Σ0
2

The body (∀y ∈N) (f (x) ≤ f (y)) of ∃-quantification is undecidable
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Implementation of the minimum principle

I ≡ λx . x T ≡ λxy . x F ≡ λxy . y

〈t1, t2〉 ≡ λz . z t1 t2 (z fresh λ-variable)

pred ≡ λn . n 〈0, 0〉 (λp . p (λxy . 〈x , s x〉)) (λxy . x)
minus ≡ λn,m .m n pred
cmp ≡ λn,m .minus n m T (λ .F)

Y ≡ (λyf . f (y y f )) (λyf . f (y y f ))

MinP ≡ λf . cc (λk .Y (λr , n . 〈n, λm . cmp (f n) (f m) I (k (r m))〉) 0)
� (∀x ∈N) f (x) ∈ N ⇒ (∃x ∈N)(∀y ∈N) f (x) ≤ f (y)
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Using the minimum principle to prove a Σ0
1-formula

Idea: The value x given by the minimum principle can be used to
prove a Σ0

1-formula, so that we can perform program extraction:

Corollary

PA2 ` Total(f ) ⇒ (∃x ∈N) (f (x) ≤ f (2x + 1))︸ ︷︷ ︸
decidable

More generally: PA2 ` Total(f ) ∧ Total(g) ⇒ (∃x ∈N) (f (x) ≤ f (g(x)))

Proof. Take the point x given by the minimum principle

Applying Σ0
1-extraction to the above non-constructive proof,

we get a correct witness in finitely many evaluation steps

How is this witness computed?
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The algorithm underlying Σ0
1-extraction

Minimum Principle (oracle)
(∃x ∈N) (∀y ∈N) ( f (x) ≤ f (y))

Σ0
1-Corollary

(∃x ∈N) ( f (x) ≤ f (2x + 1))

witness x + justification
of (∀y ∈N) ( f (x) ≤ f (y))

witness x (same as above)
+ justif. of f (x) ≤ f (2x + 1)

• Extract witness x + justification
• Evaluate witness x (using storage op.)

Return witness x

Correct: continue

Incorrect: backtrackEvaluate
justification

Σ0
1-extractor

(half conditional)

t0 :

t1 :

t2 :
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Transcript of the extraction process

Take f (x) = |x − 1000| (real minimum at x = 1000)

and apply Σ0
1-extraction to the proof of (∃x ∈N) (f (x) ≤ f (2x + 1))

Step 1 Oracle says: take x = 0 since (∀y ∈N) (f (0) ≤ f (y)) (false)
Corollary says: take x = 0 since f (0) ≤ f (1) (false)
Σ0

1-extractor evaluates incorrect justification and backtracks

Step 2 Oracle says: take x = 1 since (∀y ∈N) (f (1) ≤ f (y)) (false)
Corollary says: take x = 1 since f (1) ≤ f (3) (false)
Σ0

1-extractor evaluates incorrect justification and backtracks

Step 3 Oracle says: take x = 3 since (∀y ∈N) (f (3) ≤ f (y)) (false)
Corollary says: take x = 3 since f (3) ≤ f (7) (false)
Σ0

1-extractor evaluates incorrect justification and backtracks

Step 4 Oracle says: take x = 7 since (∀y ∈N) (f (7) ≤ f (y)) (false)
. . . . . . . .

Step 11 Oracle says: take x = 1023 since (∀y ∈N) (f (1023) ≤ f (y)) (false)
Corollary says: take x = 1023 since f (1023) ≤ f (2047) (true)
Σ0

1-extractor evaluates correct justification and returns x = 1023

Note that answer x = 1023 is correct... but not the point where f reaches its minimum
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Extraction in the Σ0
n-case (1/2)

Definition (Conditional refutation)

rA ∈ Λ is a conditional refutation of the predicate A(x) if

For all n ∈ N such that M 6|= A(n): rA n � ¬A(n)

Such a conditional refutation can be constructed for every predicate
A(x) of 1st-order arithmetic

This result is a consequence of the following

Theorem (Realizing true arithmetic formulas) [Krivine-Miquey]

For every formula A(x1, . . . , xk) of 1st-order arithmetic, there exists a
closed proof-like term tA such that:

If M |= A(n1, . . . , nk), then tA n̄1 · · · n̄k � A(n1, . . . , nk)

(for all n1, . . . , nk ∈ N)
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Extraction in the Σ0
n-case (2/2)

The Kamikaze extraction method [M. 2009]

Let

1 t0 � (∃x ∈N)A(x)

2 rA a conditional refutation of the predicate A(x)

Then the process

t0 ?M (λxy . print x (rA x y)) · �

displays a correct witness after finitely many evaluation steps

Remark: No correctness invariant is ensured as soon as the (first)
correct witness has been displayed!

After, anything may happen: crash, infinite loop, displaying incorrect
witnesses, etc. (Kamikaze behavior)
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Interlude: on numeration systems

Numeration systems used in the History:

Tally sticks (35000 BC)

Babylonian (3100 BC)

Egyptian (3000 BC)

Roman (1000 BC) XLII

Hindu-Arabic (300 AD) 42

Numeration systems used in Logic:

Peano: ssssssssssssssssssssssssssssssssssssssssss0

Church: λxf . f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (
f (f (f (f (f (f (f (f (f (f (f (f x)))))))))))))))))))))))))))))))))))))))))

Krivine: (λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λxf .x)))))))))))))))))))))))))))))))))))))))))))
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Primitive numerals (1/2)

To get rid of Krivine numerals n̄ = sn0 (cf paleolithic numeration)

we extend the machine with the following instructions:

For every natural number n ∈ N, an instruction n̂ ∈ K
with no evaluation rule (i.e. inert constant: pure data)

Intuition: n̂ ? π � segmentation fault

An instruction null ∈ K with the rules

null ? n̂ · u · v �
{
u ? π if n = 0
v ? π otherwise

Instructions f̌ ∈ K with the rules

f̌ ? n̂1 · · · n̂k · u · π � u ? m̂ · π where m = f (n1, . . . , nk)

for all the usual arithmetic operations
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Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

Primitive numerals (2/2)

Call-by-value implication, yet another definition:

Formulas A,B ::= · · · | [e]⇒ A

with the semantics: ‖{e} ⇒ A‖ = {n̂ · π : n = eN, π ∈ ‖A‖}

Redefining the set of natural numbers:

N′ := {x : ∀Z (([x ]⇒ Z)⇒ Z)}

box := λk . k x � ∀x ([x]⇒ x ∈ N′)
box n̂ � n ∈ N′

λn . n λx . š x box � (∀x ∈N′)(s(x) ∈ N′)
λnm . n λx .m λy . (+̌) x y box � (∀x , y ∈N′)(x + y ∈ N′)

rec cbv := λz0zs .Y λrx . null x z0 ((−̌) x 1̂λy . zs y (r y))
� ∀Z [Z(0) ⇒ ∀y ([y ]⇒ Z(y)⇒ Z(s(y))) ⇒ ∀x ([x]⇒ Z(x))]

rec := λz0zsn . n λx . rec cbv z0 (λyz . zs (box y) z) x
� ∀Z [Z(0)⇒ (∀y ∈N′)(Z(y)⇒ Z(s(y))) ⇒ (∀x ∈N′)Z(x)]

Conclusion: � ∀x (x ∈ N′ ⇔ x ∈ N)
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