Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000000 00000000000 000000000000000 00000000000000000

An introduction to classical realizability J

Alexandre Miquel

Loy
/’p
N
oY

c

=
a
=]
=
>
=
o
& INGENIERIA 2

=rYY -
UNIVERSIDAD [vd
DE LA REPUBLICA

URUGUAY

January 27th, 2017 — EJCIM’'17 — Lyon

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
@0000000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

The Curry-Howard correspondence

The dictionary:

Proof theory Functional programming

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
@0000000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

The Curry-Howard correspondence

The dictionary:

Proof theory Functional programming

Proposition (formula) Data type
Proof (derivation) Program (or data)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
@0000000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

The Curry-Howard correspondence

The dictionary:

Proof theory Functional programming
Proposition (formula) Data type
Proof (derivation) Program (or data)

p is a proof of the formula A p is a program of type A

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
@0000000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

The Curry-Howard correspondence

The dictionary:

Proof theory Functional programming
Proposition (formula) Data type
Proof (derivation) Program (or data)
p is a proof of the formula A p is a program of type A

AN B, A x B,

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
@0000000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

The Curry-Howard correspondence

The dictionary:

Proof theory Functional programming
Proposition (formula) Data type
Proof (derivation) Program (or data)
p is a proof of the formula A p is a program of type A

ANB, AV B, Ax B, A+B,

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
@0000000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

The Curry-Howard correspondence

The dictionary:

Proof theory Functional programming
Proposition (formula) Data type
Proof (derivation) Program (or data)
p is a proof of the formula A p is a program of type A

ANB, AVB, A= B AxB, A+B, A—B

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
@0000000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

The Curry-Howard correspondence

The dictionary:

Proof theory Functional programming
Proposition (formula) Data type
Proof (derivation) Program (or data)
p is a proof of the formula A p is a program of type A
AANB, AVB, A=B AxB, A+B, A—B
Deduction rule Typing rule

Proof checker Type checker

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
@0000000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

The Curry-Howard correspondence

The dictionary:

Proof theory Functional programming
Proposition (formula) Data type
Proof (derivation) Program (or data)
p is a proof of the formula A p is a program of type A
ANB, AVvB, A=B AxB, A+B, A—B
Deduction rule Typing rule
Proof checker Type checker
Cut elimination Computation
Cut-free proof Value

Introduction
©0000000

2nd-order arithmetic (PA2)
0000000000000 000

Extracted programs
00000000000

Classical realizability
000000000000 000

The Curry-Howard correspondence

The dictionary:

Proof theory

Functional programming

Proposition (formula)
Proof (derivation)

p is a proof of the formula A
AANB, AVB, A=B

Deduction rule
Proof checker

Cut elimination
Cut-free proof

Proof of a lemma
Theory (statements & proofs)

Data type
Program (or data)

p is a program of type A
AxB, A+B, A—B

Typing rule
Type checker

Computation
Value

Sub-program
Module (interface & implem.)

Witness extraction
000000000000 00000

Introduction 2nd-order arithmetic (PA2)

0@000000 0000000000000 000

Extracted programs
00000000000

Core language: the A-calculus

@ A universal language of functions

Classical realizability Witness extraction
000000000000 000 000000000000 00000

[Church’41]

@ Only three constructions: variable, abstraction, application:

Language | Var. Abstraction Application
A-calculus Y Ax . (expr) (expr) (expr)
Math. X x > (expr) f({expr))
LISP x | (Lambda (x) (expr)) | ({expr) (expr))
Python X lambda x : (expr) (expr)({expr))

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
0@000000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

Core language: the A-calculus [Church’41]

@ A universal language of functions

@ Only three constructions: variable, abstraction, application:

Language | Var. Abstraction Application
A-calculus Y Ax . (expr) (expr) (expr)
Math. X x > (expr) f({expr))
LISP x | (Lambda (x) (expr)) | ({expr) (expr))
Python X lambda x : (expr) (expr)({expr))

o Computation rule = [-reduction

(Ax.x+x+18)(3x4) >3 (3x4)+(3x4)+18
— = &2

e Formally: (M. t)u =5 t{x:=u}

From proofs to programs

¥x (P(x) = Q(x)) = ¥x(Q(x) = R(x)) = Vx(P(x)= R(x))

=] 5 = = £ DA

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00@00000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

From proofs to programs

[x (PG = Q)] -

[Vx (Q(x) = R(x))] P(x) = Q(x) [P(x)]

Q(x) = R(x) Q(x)
R(x)
P(x) = R(x)
Vx (P(x) = R(x))
Vx (Q(x) = R(x)) = Vx(P(x) = R(x))

Vx (P(x) = Q(x)) = ¥x(Q(x) = R(x)) = Vx(P(x)= R(x))

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00@00000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

From proofs to programs

Vx (PG = Q)]

X(Q) = ROI" . P00k " PO
Q) = R(K)) -
RGO
P(X) = R(X) :>-|n'tro
x (P(x) = R(x)) " "r® i
Vx (Q(x) = R(x)) = Vx(P(x) = R(x)) it

Vx (P(x) = Q(x)) = ¥x(Q(x) = R(x)) = Vx(P(x)= R(x))

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability
00@00000 0000000000000 000 00000000000 000000000000 000

From proofs to programs

x (P(x) = Q0]

Witness extraction
000000000000 00000

7)U

¥ (QG) = RO © P(x) = Q(x) [P(x)] o
Q(x) = R(x) Q(x) o
R(x)
P(x) = RO
Vx (P(x) = R(x)) N
g

Vx (Q(x) = R(x)) = Vx(P(x) = R(x))

Af

Vx (P(x) = Q(x)) = ¥x(Q(x) = R(x)) = Vx(P(x)= R(x))

From proofs to programs

N GEE N)
[Vx (Q(x) = R(x))] P(x) = Q(x) [P(] o
Q(x) = R(x) Q(x)
R(x) \

P(x) = R(x) "

Vx (P(x) = R(x))
Vx (Q(x) = R(x)) = Vx(P(x) = R(x))
Vx (P(x) = Q(x)) = ¥x(Q(x) = R(x)) = Vx(P(x) = R(x))

(C

g

Af

M. Ag . Au.g(fu)

=] 5 = = £ DA

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
000e0000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

Significance of the Curry-Howard correspondence

@ Theoretical impact on:
e Proof theory
o Constructive mathematics
o Category theory
o Denotational semantics
e Functional programming

@ Theoretical by-products:

o Type theory (Martin-L&f),
o Linear logic (Girard)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
000e0000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

Significance of the Curry-Howard correspondence

@ Theoretical impact on:
e Proof theory
o Constructive mathematics
o Category theory
o Denotational semantics
e Functional programming

@ Theoretical by-products:

o Type theory (Martin-L&f),
o Linear logic (Girard)

o Applications:
o Proof assistants: Coq, Agda
o Program certification
o Program extraction

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
0000e000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

From intuitionistic logic to classical logic (1/2)

o For a long time, the Curry-Howard correspondence was limited to
intuitionistic logic and constructive mathematics, since it was
(thought to be) incompatible with classical reasoning principles,
such as for instance:

o The law of excluded middle: AV —A

Double-negation elimination: ——A= A

o Reductio ad absurdum: from the absurdity of —=A, deduce A
o Most De Morgan laws, e.g.: —(AAB)=-AV-B
Peirce’s law: (A= B)=A)=A

o The full axiom of choice

@ However, a lot of interesting mathematics can be formalized in
intuitionistic logic (i.e. without using classical reasoning)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000800 0000000000000 000 00000000000 000000000000 000 000000000000 00000

From intuitionistic logic to classical logic (2/2)

@ In 1990, Griffin's discovered a connection between classical reasoning
and control operators (call/cc)

call/cc : (A=B)=A)=A (Peirce’s law)

@ A new paradigm for the Curry-Howard correspondence:

Classical reasoning = programming with continuations
= computing by trial/error

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000800 0000000000000 000 00000000000 000000000000 000 000000000000 00000
From intuitionistic logic to classical logic (2/2)

@ In 1990, Griffin's discovered a connection between classical reasoning

and control operators (call/cc)

call/cc : (A=B)=A)=A (Peirce’s law)

@ A new paradigm for the Curry-Howard correspondence:

@ Many classical A\-calculi:

Classical reasoning

A
A-sym
)\c
Apfi

programming with continuations
computing by trial /error

[Parigot 1992]

[Barbanera & Berardi 1996]
[Krivine 1994]

[Curien & Herbelin 2000]

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

00000800 0000000000000 000 00000000000 0000000000000 00 000000000000 00000
From intuitionistic logic to classical logic (2/2)
@ In 1990, Griffin's discovered a connection between classical reasoning

and control operators (call/cc)

call/cc : (A=B)=A)=A (Peirce’s law)

A new paradigm for the Curry-Howard correspondence:

Classical reasoning = programming with continuations
= computing by trial/error

@ Many classical A\-calculi:

o Au [Parigot 1992]
e A-sym [Barbanera & Berardi 1996]
o Ac [Krivine 1994]
o Auji [Curien & Herbelin 2000]

Classical realizability [Krivine "00, '03, '09]

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000080 0000000000000 000 00000000000 000000000000 000 000000000000 00000

What is classical realizability?

@ An operational semantics for the programs extracted from classical
proofs, formulated using the tools of model theory

e Based on the connection between Peirce’s law and call/cc
o Allows to predict the behavior of classical programs

o Interprets the Axiom of Dependent Choices (DC) [K. 2003]

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability
00000080 0000000000000 000 00000000000

What is classical realizability?

Witness extraction
000000000000 000 000000000000 00000

@ An operational semantics for the programs extracted from classical
proofs, formulated using the tools of model theory

e Based on the connection between Peirce’s law and call/cc
o Allows to predict the behavior of classical programs

o Interprets the Axiom of Dependent Choices (DC) [K. 2003]

@ Initially designed for PA2, but extends to:
e Higher-order arithmetic (PAw)
o Zermelo-Fraenkel set theory (ZF) [K. 2001, 2012]

o The calculus of inductive constructions (CIC) [M. 2007]
(with classical logic in Prop)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000080 0000000000000 000 00000000000 000000000000 000 000000000000 00000

What is classical realizability?

@ An operational semantics for the programs extracted from classical
proofs, formulated using the tools of model theory

e Based on the connection between Peirce’s law and call/cc
o Allows to predict the behavior of classical programs

o Interprets the Axiom of Dependent Choices (DC) [K. 2003]

@ Initially designed for PA2, but extends to:
e Higher-order arithmetic (PAw)
o Zermelo-Fraenkel set theory (ZF) [K. 2001, 2012]

o The calculus of inductive constructions (CIC) [M. 2007]
(with classical logic in Prop)

@ Deep connections with Cohen forcing [K. 2011]

~ can be used to define new models of PA2/ZF [K. 2012]

Plan

© Introduction

© Second-order arithmetic (PA2)

© Extracted programs

@ The classical realizability interpretation

© Witness extraction

o Introduction

© Second-order arithmetic (PA2)

Q Extracted programs

@ The classical realizability interpretation

0 Witness extraction

«0O)>r «Fr «

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

The language of (minimal) second-order logic

@ Second-order logic deals with two kinds of objects:

o lst-order objects = individuals (i.e. basic objects of the theory)
o 2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms e, el = x | f(en,...,ek)
Formulas AB = X(e,...,ex) | A=B
| VxA | VXA

@ Two kinds of variables

o lst-order variables: x, y, z, ...
e 2nd-order variables: X, Y, Z, ... of all arities Kk > 0

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000000 00000

The language of (minimal) second-order logic

@ Second-order logic deals with two kinds of objects:

o lst-order objects = individuals (i.e. basic objects of the theory)
o 2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms e, el = x | f(en,...,ek)
Formulas AB = X(e,...,ex) | A=B
| VxA | VXA

@ Two kinds of variables

o lst-order variables: x, y, z, ...
e 2nd-order variables: X, Y, Z, ... of all arities Kk > 0

@ 2nd-order arithmetic: individuals represent natural numbers

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 00@0000000000000 00000000000 000000000000 000 000000000000 00000

First-order terms (1/2)

@ Defined from a first-order signature X (as usual):

First-order terms e,/ = x | f(e,...,e) J

o f ranges over k-ary function symbols in
e constant symbol = function symbol of arity 0

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 00@0000000000000 00000000000 000000000000 000 000000000000 00000

First-order terms (1/2)

@ Defined from a first-order signature X (as usual):

First-order terms e,/ = x | f(e,...,e) J

o f ranges over k-ary function symbols in
e constant symbol = function symbol of arity 0

@ In what follows we assume that the signature ¥ contains:

e a constant symbol 0 (zero)

e a unary function symbol s (successor)

o binary function symbols 4, X, — (truncated subtraction)

e function symbols for all primitive recursive functions (more generally)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability
00000000 00@0000000000000 00000000000 000000000000 000

First-order terms

@ Defined from a first-order signature X (as usual):

First-order terms e, e = x | f(en... e)

Witness extraction
000000000000 00000

(1/2)

o f ranges over k-ary function symbols in
e constant symbol = function symbol of arity 0

@ In what follows we assume that the signature ¥ contains:

e a constant symbol 0 (zero)

e a unary function symbol s (successor)

o binary function symbols 4, X, — (truncated subtraction)
]

function symbols for all primitive recursive functions (more generally)

@ Peano numerals: s(---s(0)---) written n
——

n

(n€IN)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability
00000000 00@0000000000000 00000000000 000000000000 000

First-order terms

@ Defined from a first-order signature X (as usual):

First-order terms e, e = x | f(en... e)

Witness extraction
000000000000 00000

(1/2)

o f ranges over k-ary function symbols in
e constant symbol = function symbol of arity 0

@ In what follows we assume that the signature ¥ contains:

e a constant symbol 0 (zero)

e a unary function symbol s (successor)

o binary function symbols 4, X, — (truncated subtraction)
]

function symbols for all primitive recursive functions (more generally)

@ Peano numerals: s(---s(0)---) written n
——

n

o First-order substitution written: e{x := ¢’}

(n€IN)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0008000000000 000 00000000000 000000000000 000 000000000000 00000

First-order terms (2/2)

@ Each k-ary function symbol f is interpreted by the corresponding
primitive recursive function, written

NN N

The constant symbol 0 is interpreted by 0N =0 (€ IN)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0008000000000 000 00000000000 000000000000 000 000000000000 00000

First-order terms (2/2)

@ Each k-ary function symbol f is interpreted by the corresponding
primitive recursive function, written

NN N
The constant symbol 0 is interpreted by 0N =0 (€ IN)

@ The denotation in IN (i.e. the value) of a closed first-order term e
is written eN. For instance:

S
=
I
—
[%)
—
%)
—~
n
1%
—
(=)
~—
~—
~—
=
|
SN

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000@00000000000 00000000000 000000000000 000 000000000000 00000

Formulas (1/2)

@ Formulas of minimal second-order logic

Formulas A B = X(ey,...,ex) | A=B
| VxA | VXA

only based on implication and 1st/2nd-order universal quantification

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000@00000000000 00000000000 000000000000 000 000000000000 00000

Formulas (1/2)

@ Formulas of minimal second-order logic

Formulas A B = X(ey,...,ex) | A=B
| VxA | VXA J

only based on implication and 1st/2nd-order universal quantification

@ Implication is right-associative:
Ai=--=A,=B means A =(--=((A,=B))

The above formula is equivalent to (A A---AA,) = B
but without using conjunction

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000@00000000000 00000000000 000000000000 000 000000000000 00000

Formulas (1/2)

@ Formulas of minimal second-order logic

Formulas A B = X(ey,...,ex) | A=B
| VxA | VXA J

only based on implication and 1st/2nd-order universal quantification

@ Implication is right-associative:
Ai=--=A,=B means A =(--=((A,=B))

The above formula is equivalent to (A A---AA,) = B
but without using conjunction

@ Two kinds of substitutions:

o lst-order substitution, written A{x := e} (capture avoiding)

e 2nd-order substitution, written A{X := P} (postponed)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 00000e0000000000 00000000000 000000000000 000 000000000000 00000

Formulas (2/2)

o Other connectives/quantifiers defined via second-order encodings:

1 = vzz (absurdity)

-A = A= L (negation)
ANB = VZ((A=B=2)=2) (conjunction)
AVB = VZ(A=2Z2)= (B=2Z)=2) (disjunction)
AsB = (A=B)A(B=A) (equivalence)
IxA(x) = VZ(Vx(Ax)=Z)=2) (1st-order 3)
IXAX) = VZOUVX(AX)= 2Z2)= 2) (2nd-order 3)
ee=e = VZ(Z(a)=Z(e)) (Leibniz equality)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability

Witness extraction

00000000 00000e0000000000 00000000000 000000000000 000 000000000000 00000

Formulas

(2/2)

o Other connectives/quantifiers defined via second-order encodings:

1l = VvzZ2z
A = A= 1
ANB = VZ((A=B=Z)=2)
AVB = VZ(A=2Z)=(B=2)= 2)
AsB = (A= B)A(B= A)
IxA(x) = VZ(Vx(Ax)=Z)=2)
IXAX) = VZ(YX(AX)= Z) = 2)
e=6 = VZ(Z(a)=Z(e))

(absurdity)
(negation)

(conjunction)
(disjunction)

(equivalence)

(1st-order 3)
(2nd-order 3)

(Leibniz equality)

@ We could also have used the De Morgan laws
AANB = —=(A=B=1) IxA(x) =
AVB = -A=-B= 1 3X A(x)

that are classically equivalent

—Vx =A(x)
—VX ~A(X)

| 00000000 5550008050000000 00000000065 000000005000000 00080656650000000
Predicates

@ Concrete relations are represented using predicates
Predicates

P, Q —

(syntactic sugar)
R Ao

(of arity k)J

DA

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 000000e000000000 00000000000 000000000000 000 000000000000 00000

Predicates

@ Concrete relations are represented using predicates (syntactic sugar)
Predicates P,Q == Xi---XAo (of arity k)J

Definition (Predicate application and 2nd-order substitution)

©Q P(e,...,e) is the formula defined by

P(ei,...,e) = Ao{x1:=e1,...,xk ‘= e}

where P = X1 - - - XcAo, and where e, ..., ek are k first-order terms

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 000000e000000000 00000000000 000000000000 000 000000000000 00000

Predicates

@ Concrete relations are represented using predicates (syntactic sugar)
Predicates P,Q == Xi---XAo (of arity k)J

Definition (Predicate application and 2nd-order substitution)

©Q P(e,...,e) is the formula defined by

P(ei,...,e) = Ao{x1:=e1,...,xk ‘= e}

where P = X1 - - - XcAo, and where e, ..., ek are k first-order terms

@ 2nd-order substitution A{X := P} (where X and P are of the same arity k)
consists to replace in the formula A every atomic sub-formula of the form

X(e,...,ek) by the formula P(er,...,ek)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 000000e000000000 00000000000 000000000000 000 000000000000 00000

Predicates

@ Concrete relations are represented using predicates (syntactic sugar)

Predicates P,Q == Xi---XAo (of arity k))

Definition (Predicate application and 2nd-order substitution)

©Q P(e,...,e) is the formula defined by
P(ei,...,e) = Ao{x1:=e1,...,xk ‘= e}

where P = X1 - - - XcAo, and where e, ..., ek are k first-order terms

@ 2nd-order substitution A{X := P} (where X and P are of the same arity k)
consists to replace in the formula A every atomic sub-formula of the form

X(e,...,ek) by the formula P(er,...,ek)

@ Note: Every k-ary 2nd-order variable X can be seen as a predicate:

X =)?1~~-)A<kX(X1,...,Xk)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000e00000000 00000000000 000000000000 000 000000000000 00000

Unary predicates as sets

@ Unary predicates represent sets of individuals
Syntactic sugar: {x: A} = XA ecP = P(e)

Example: The set N of Dedekind numerals
N={x:VZ0eZ=Vy(yeZ=s(y)eZ)=xcZ}

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000e00000000 00000000000 000000000000 000 000000000000 00000

Unary predicates as sets

@ Unary predicates represent sets of individuals
Syntactic sugar: {x: A} = XA ecP = P(e)

Example: The set N of Dedekind numerals
N={x:VZ0eZ=Vy(yeZ=s(y)eZ)=xcZ}

@ Relativized quantifications:
(VxeP)A(x) = Vx(xeP= A(x))

(3xeP)A(x) = VZ(Vx(xeP=A(x)=2Z)=Z)
< 3x(x € PAA(x))

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000e00000000 00000000000 000000000000 000 000000000000 00000

Unary predicates as sets
@ Unary predicates represent sets of individuals
Syntactic sugar: {x: A} = %A ee P = P(e)

Example: The set N of Dedekind numerals
N={x:VZ0eZ=Vy(yeZ=s(y)eZ)=xcZ}

@ Relativized quantifications:

(VxeP)A(x) = Vx(xeP= A(x))

(3xeP)A(x) = VZ(Vx(xeP=A(x)=2Z)=Z)
< 3x(x € PAA(x))

@ Inclusion and extensional equality:

PCQ = ¥x(xeP=xeQ)
P=Q = VYVx(xeP&exeQ)
@ Set constructors: PUQ = {x : xePVxeQ} (etc.)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 00000000e0000000 00000000000 000000000000 000 000000000000 00000

Sequents

Definition (Sequent)

A sequent is a pair of the form
A, ..., AL EA (n>0)
where A1, ..., A,, A are formulas
@ Aj,..., A, are the hypotheses, which form the context
@ A is the thesis
@ I is the entailment symbol (that reads: ‘entails'))
@ Sequents are usually written TH A (T finite list of formulas)

@ A means: ‘“under the hypotheses in I, the formula A holds”

o Notations FV/(I'), T{x:=t} extended to finite lists [

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 000000000 e000000 00000000000 000000000000 000 000000000000 00000

Rules of inference & systems of deduction

Definition (Rule of inference)

A rule of inference is a pair formed by a finite set of sequents
{F1F Ay, ...,T,F A} and a sequent I = A, usually written

MMEFA - Th,FA,
Mr=A

el FAy,...,T,FA, arethe premises of the rule (n>0)

o A s the conclusion of the rule

Definition (System of deduction)

A system of deduction is a set of inference rules

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 000000000 0e00000 00000000000 000000000000 000 000000000000 00000

Natural deduction for classical 2nd-order logic (NK2)

@ Here, we work in system NK2, whose deduction rules are:

(Axiom) A"
rAFB rTFA=B TFA
=-intro,elim =
| FA= B rFB

FA [FVxA
(Vi-intro,elim) FEvxA 0 PR A= o)

kA [FVXA
(V-intro,elim) Frvxa FO FEAX = Py
(Peirce's law) rN-((A=B)=A) = A

System NK2 contains the usual rules of intuitionistic 2nd-order logic
(NJ2), plus Peirce's law, for classical reasoning

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 00000000000e0000 00000000000 000000000000 000 000000000000 00000

Derivations

@ Deduction rules are the elementary bricks of reasoning. They can be
assembled to form derivations (finite sequent-labelled trees)

Example: derivation of the syllogism Barbara

(axiom) 3 ¥x(P(x) = QX)) Ea;o:.)m) (axiom)

I3 F Vx (Q(x) = R(x)) L I3 F P(x) = Q(x) I3 F P(x) .
HF QX = R(x) ™ nrew (S -eim)
I3 F R(x))
RF PR =R
M FVx(P(x) = R(x) & " _
M F VX (Q) = R() = Vx (P() = RG) o
F Vx (P(x) = Q(x)) = Vx (Q(x) = R(x)) = Vx (P(x) = R(x))
with 1 = Vx(P(x) = Q(x)), Tl =T1,Vx(Q(x) = R(x)), [3=T, P(x)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 00000000000e0000 00000000000 000000000000 000 000000000000 00000

Derivations

@ Deduction rules are the elementary bricks of reasoning. They can be
assembled to form derivations (finite sequent-labelled trees)

Example: derivation of the syllogism Barbara

(axiom)

I3 FVx(P(x) = Q(x))

axiom vl elim (axiom
M vx (@) = RG) ™ GEPX) = QX HFPx)
(Vl»elim) (=-elim)
I3 F Q(x) = R(x) I3 F Q(x)
(=-elim)
I3 F R(x)
(=>-intro)

M F P(x) = R(x)
I F Vx (P(x) = R(x)) (
M FVx(Q(x) = R(x)) = Vx(P(x) = R(x))
F Vx (P(x) = Q(x)) = Vx (Q(x) = R(x)) = Vx(P(x) = R(x))

(Vl-intro)

=>-intro)

(=>-intro)

with T = Vx(P(x) = Q(x)), T2 =T1,Vx(Q(x) = R(x)), T3 =T,,P(x)

@ A sequent [- A is derivable when it appears as the conclusion of a
derivation. A formula A is derivable when the sequent - A is

@ Remark: One also uses proof/provable for derivation/derivable

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 000000000000e000 00000000000 000000000000 000 000000000000 00000

Expressiveness

The 8 deduction rules of system NK2 allow us to derive the usual rules of
logic (for all connectives & quantifiers):

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 000000000000e000 00000000000 000000000000 000 000000000000 00000

Expressiveness

The 8 deduction rules of system NK2 allow us to derive the usual rules of
logic (for all connectives & quantifiers):

@ Introduction/elimination rules for defined connectives/quantifiers:

1 =A, A= B=AAB, AANB = A, AANB = B,
A= AV B, B= AVB, A=C)=(B=C)=AvVvB=C_,
A(e) = Ix A(x), Vx (A(x) = C) = IxA(x) = C,

A(P) = 3IX A(X), VX (A(X) = C) = IX A(X) = C,
e=e¢, e =6 = 6 =e, e =6 = e = €63 = € = €3, etc.

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 000000000000e000 00000000000 000000000000 000 000000000000 00000

Expressiveness

The 8 deduction rules of system NK2 allow us to derive the usual rules of
logic (for all connectives & quantifiers):

@ Introduction/elimination rules for defined connectives/quantifiers:

1 =A, A= B=AAB, AANB = A, AANB = B,
A= AV B, B= AVB, A=C)=(B=C)=AvVvB=C_,
A(e) = Ix A(x), Vx (A(x) = C) = IxA(x) = C,

A(P) = 3IX A(X), VX (A(X) = C) = IX A(X) = C,
e=e¢, e =6 = 6 =e, e =6 = e = €63 = € = €3, etc.

o Classical reasoning + De Morgan laws:
AV -A

A -(AAB) & -AV-B
(B = —A) —VxA(x) & Ix-A(x)

—|—\A

&
(A= B) &

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 e00 00000000000 000000000000 000 000000000000 00000

Axioms of classical 2nd-order arithmetic (PA2)

o We have defined (classical) 2nd-order logic (NK2)
To get 2nd-order arithmetic (PA2), we add the following axioms:

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 e00 00000000000 000000000000 000 000000000000 00000

Axioms of classical 2nd-order arithmetic (PA2)

o We have defined (classical) 2nd-order logic (NK2)
To get 2nd-order arithmetic (PA2), we add the following axioms:

o Defining axioms of primitive recursive function symbols:

Vx (x40 = x) Vx (x x 0=0)
VxVy (x + s(y) = s(x +y)) VxVy (x x s(y) = x X y 4 x)
Vx (x —0=x)

Vy (0—y =0) etc.

VxVy (s(x) —s(y) =x—y)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 e00 00000000000 000000000000 000 000000000000 00000

Axioms of classical 2nd-order arithmetic (PA2)

o We have defined (classical) 2nd-order logic (NK2)
To get 2nd-order arithmetic (PA2), we add the following axioms:

o Defining axioms of primitive recursive function symbols:

Vx (x40 = x) Vx (x x 0=0)
VxVy (x + s(y) = s(x +y)) VxVy (x x s(y) = x X y 4 x)
Vx (x —0=x)

Vy (0—y =0) etc.

VxVy (s(x) = s(y) = x—y)
o Peano axioms:

Vx~(s(x) = 0) Wy (s(x) = s(y) = x = ¥)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 e00 00000000000 000000000000 000 000000000000 00000

Axioms of classical 2nd-order arithmetic (PA2)

o We have defined (classical) 2nd-order logic (NK2)
To get 2nd-order arithmetic (PA2), we add the following axioms:

o Defining axioms of primitive recursive function symbols:

Vx (x40 = x) Vx (x x 0=0)
VxVy (x + s(y) = s(x +y)) VxVy (x x s(y) = x X y 4 x)
Vx (x —0=x)

Vy (0—y =0) etc.

VxVy (s(x) = s(y) = x—y)
o Peano axioms:

Vx~(s(x) = 0) Wy (s(x) = s(y) = x = ¥)

Technically, these axioms are aggregated to the deduction system as new
inference rules of the form

IMN-Vx(x+0=x) (etc.)

| 000000 Go0abas000000080 | G00000000 000000000000000 00000005060000000
The problem of induction

(1/2)

@ The above presentation of PA2 contains no induction axiom

DA

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 0e0 00000000000 000000000000 000 000000000000 00000

The problem of induction (1/2)

@ The above presentation of PA2 contains no induction axiom

@ The reason is that the property of being a natural number is
definable in 2nd-order logic, via the set/predicate:

= {x : VZ(2(0) = Yy (Z(y) = Z(s(y))) = Z(x))} J

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 0e0 00000000000 000000000000 000 000000000000 00000

The problem of induction (1/2)

@ The above presentation of PA2 contains no induction axiom

@ The reason is that the property of being a natural number is
definable in 2nd-order logic, via the set/predicate:

= {x : VZ(2(0) = Yy (Z(y) = Z(s(y))) = Z(x))} J

@ So we can replace 1st-order quantifications by their versions
relativized to N (arithmetic quantifications):
(VxeN)A(x) = V¥x(xe€N= A(x))

(ExeN)A(x) = VZ((vxeN)(Ax)=2) = 2)
& Ix(xeN A A(x))

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 000000000000000e 00000000000 000000000000 000 000000000000 00000

The problem of induction (2/2)

@ Through this process of relativization, induction is derivable:
Relativized principle of induction
VZ(Z(0) = (VxeN)(Z(x)= Z(s(x))) = (¥xeN) Z(x))

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 000000000000000e 00000000000 000000000000 000 000000000000 00000

The problem of induction (2/2)

@ Through this process of relativization, induction is derivable:

Relativized principle of induction
VZ(Z(0) = (VxeN)(Z(x)= Z(s(x))) = (¥xeN) Z(x))

@ In practice, one works with relativized quantification the same way
as with unrelativized ones

@ However, we need to check that the set/predicate N is closed under
all the operations of the signature X:

Proposition (Totality of arithmetic expressions)

For each arithmetic expression e(xi, ..., xk), the formula
Total(e) = (Vxq,...,xk€N) e(x1,...,xk) €N

is derivable in system NK2 (without an axiom)

© Introduction

© Second-order arithmetic (PA2)

© Extracted programs

@ The classical realizability interpretation

e Witness extraction

«O>r «Fr <

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 0@000000000 000000000000 000 000000000000 00000

The \.-calculus

Terms, stacks and processes

Terms tbu == x | M.t | tu | « | stop | kg
Stacks ' = o | tem (t closed)
Processes p,q = txm (t closed)

@ A X-calculus with two kinds of constants:

e Instructions a (call/cc) and stop
o Continuation constants k,, one for every stack 7 (generated by)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 0@000000000 000000000000 000 000000000000 00000

The \.-calculus

Terms, stacks and processes

Terms tbu == x | M.t | tu | « | stop | kg
Stacks ' = o | tem (t closed)
Processes p,q = txm (t closed)

@ A X-calculus with two kinds of constants:

e Instructions a (call/cc) and stop
o Continuation constants k,, one for every stack 7 (generated by)

o Notations:
AN = set of closed A.-terms
M = set of stacks (closed)
AxT = set of processes (closed)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00@00000000 000000000000 000 000000000000 00000

The Krivine Abstract Machine (KAM) (1/2)

@ The set of processes (A 1) is equipped with a preorder of
evaluation p = p’, that is generated from the following rules:

Krivine Abstract Machine (KAM)

Push tu x 3= txu-m
Grab Ax.txu-m = t{xi=ulxm
Save TxU-T > uxky-m
Restore ke xu-7" > u* T

(+ reflexivity & transitivity)

o Extensible machinery: can add extra instructions and rules

Witness extraction
000000000000 00000

(2/2)

Extracted programs Classical realizability
000000000000 000

2nd-order arithmetic (PA2)
0000000000

Introduction
0000000000000 000

00000000

The Krivine Abstract Machine (KAM)

@ Rules Push and Grab implement weak head (-reduction:

tu x ™ - txu-m J

Push
M. txu-m > t{x:=u}*xm

Grab

o Example: (Axy.t)uvxm > Axy.txu-v-mw
= t{x=ul{y=v}*m

Witness extraction
000000000000 00000

(2/2)

Extracted programs Classical realizability
000000000000 000

2nd-order arithmetic (PA2)
0000000000

Introduction
0000000000000 000

00000000

The Krivine Abstract Machine (KAM)

@ Rules Push and Grab implement weak head (-reduction:

tu x ™ - txu-m J

Push
M. txu-m > t{x:=u}*xm

Grab

o Example: (Axy.t)uvxm > Axy.txu-v-m
= t{x=ul{y=v}*m

@ Rules Save and Restore implement backtracking:

CTHxUu-mT = Uxkg-w J

Save
ke xu-m = uxm

Restore

o Instruction @ most often used in the pattern
= ax(Ak.t)-w
= (Ak.t)*xkq 7
= t{ki=ke}xm

ac(Mk.t)xm

Witness extraction
000000000000 00000

(2/2)

Classical realizability

Extracted programs
000000000000 000

2nd-order arithmetic (PA2)
0000000000

Introduction
0000000000000 000

00000000

The Krivine Abstract Machine (KAM)

@ Rules Push and Grab implement weak head (-reduction:

Push tu x - txu-m
Grab M.t u-m = t{xi=ulxm

= AXy.txu-v-m

(Axy.t)uvxm
= t{x=ul{y=v}*m

o Example:

@ Rules Save and Restore implement backtracking:

CTHxUu-mT = Uxkg-w J

Save
ke xu-m = uxm

Restore

o Instruction @ most often used in the pattern

c(Ak.t)xm > a@x(Ak.t) -7
= (Ak.t)*xkq 7
= t{ki=ke}xm

@ Instruction stop has no evaluation rule: stop x 7

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 0000e000000 000000000000 000 000000000000 00000

A type system for 2nd-order logic: ANK2 (1/2)

@ Aim: Turning the deduction system NK2 into a type system
written ANK2, where:

o Formulas are used as types

e The computational contents of proofs is given by A.-terms

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 0000e000000 000000000000 000 000000000000 00000

A type system for 2nd-order logic: ANK2 (1/2)

@ Aim: Turning the deduction system NK2 into a type system
written ANK2, where:

o Formulas are used as types

e The computational contents of proofs is given by A.-terms

e Typing judgments of the form
X1 AL, .. xp A FECA

typing context I

= sequent decorated with computational information

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 0000e000000 000000000000 000 000000000000 00000

A type system for 2nd-order logic: ANK2 (1/2)

@ Aim: Turning the deduction system NK2 into a type system
written ANK2, where:

o Formulas are used as types

e The computational contents of proofs is given by A.-terms

e Typing judgments of the form

typing context I

X1 AL, .. xp A FECA J

= sequent decorated with computational information

@ Note: We only use proof-like terms, that is: A.-terms without
continuation constants (k) and without the instruction stop

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000800000 000000000000 000 000000000000 00000

A type system for 2nd-order logic: ANK2 (2/2)

Typing rules of system ANK2

mlf(XA)er
x:A-t:B r'EFt:A=B Fr’Fu:A
lrN-Xx.t:A=B l=tu:B
Fr=t: A it x¢FV(T) [Et:VxA
M=t:vxA Fet: Alx:=e}
Fr-t: A it XEFV(r) F=t: VXA
F=t: VXA MN=t: A{X =P}
lN-ac:((A=B)=A) = A

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000800000 000000000000 000 000000000000 00000

A type system for 2nd-order logic: ANK2 (2/2)

Typing rules of system ANK2

mif(x:A)Er
x:AFt:B r-t:A=B Frcuw:A
r=Xx.t: A=B M-tu: B
Frt: A it xgFV(r) [Ht:VxA
M=t:vxA Fet: Alx:=e}
FrEe: A it XEFV(r) F=t: VXA
FEt: VXA MN=t: A{X =P}
lN-ac:((A=B)=A) = A

o Remarks:
o V interpreted uniformly (intersection type)
o typing derivations defined the same way as logical derivations
e type checking/inference undecidable

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000080000 000000000000 000 000000000000 00000

Relation between deduction (NK2) and typing (ANK2)

o Each typing context = x; : A1,...,x,: A, can be turned
into a logical context ™ = A;,..., A,

@ Each typing judgment I' - t : A can be turned into a sequent:
FrFt: A =T*+HA
@ Each typing derivation d is turned into a logical derivation d*

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000080000 000000000000 000 000000000000 00000

Relation between deduction (NK2) and typing (ANK2)

o Each typing context = x; : A1,...,x,: A, can be turned
into a logical context ™ = A;,..., A,

@ Each typing judgment I' - t : A can be turned into a sequent:
FrFt: A =T*+HA
@ Each typing derivation d is turned into a logical derivation d*

Equivalence between systems NK2 and ANK2

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000080000 000000000000 000 000000000000 00000

Relation between deduction (NK2) and typing (ANK2)

o Each typing context = x; : A1,...,x,: A, can be turned
into a logical context ™ = A;,..., A,

@ Each typing judgment I' - t : A can be turned into a sequent:
FrFt: A =T*+HA
@ Each typing derivation d is turned into a logical derivation d*

Equivalence between systems NK2 and ANK2

@ If d is a typing derivation of [t : A in system ANK2,
then d* is a logical derivation of ™ F A in system NK2

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000080000 000000000000 000 000000000000 00000

Relation between deduction (NK2) and typing (ANK2)

e Each typing context =x;:A1,...,x,: Ay can be turned
into a logical context ™ = A;,..., A,

@ Each typing judgment I' - t : A can be turned into a sequent:
FrFt: A =T*+HA
@ Each typing derivation d is turned into a logical derivation d*

Equivalence between systems NK2 and ANK2

@ If d is a typing derivation of [t : A in system ANK2,
then d* is a logical derivation of ™ F A in system NK2

@ Every logical derivation d of a sequent '+ A in system NK2
comes from a typing derivation dp of a judgment of the form
o t:A insystem ANK2 (with [§ =T and di = d)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000080000 000000000000 000 000000000000 00000

Relation between deduction (NK2) and typing (ANK2)

e Each typing context =x;:A1,...,x,: Ay can be turned
into a logical context ™ = A;,..., A,

@ Each typing judgment I' - t : A can be turned into a sequent:
FrFt: A =T*+HA

@ Each typing derivation d is turned into a logical derivation d*

Equivalence between systems NK2 and ANK2

@ If d is a typing derivation of [t : A in system ANK2,
then d* is a logical derivation of ™ F A in system NK2

@ Every logical derivation d of a sequent '+ A in system NK2
comes from a typing derivation dp of a judgment of the form
o t:A insystem ANK2 (with [§ =T and di = d)

The typing derivation dp is unique, up to the names of variables

The term t is called the program extracted from the derivation d

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability
00000000 0000000000000 000 00000008000 000000000000 000

Example: extracting a program from a proof

Witness extraction
000000000000 00000

Example: derivation of the syllogism Barbara

oy PP = 0 T (o)

I3 F Vx (Q(x) = R(x)) L M3 F P(x) = Q(x) I3 F P(x) _
HEQX) = Rx) oo™ nrew - (S-eim)
s F R(x) _
N2 F P(x) = R(x) (2"";“_’)
N EVx (P(x) = R(x)) ,
M F VX (@) = R() = W (P() = RG))
Fvx (P(x) = Q(x)) = vx (Q(x) = R(x)) = vx (P(x) = R() ™
with T =Vx(P(x) = Q(x)), Tl =T1,Vx(Q(x) = R(x)), I3=T>, P(x)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000008000 000000000000 000 000000000000 00000

Example: extracting a program from a proof

Example: derivation of the syllogism Barbara

I3 F f:Vx(P(x) = Q(x))
M3 F g :¥x(Q(x) = R(x)) I3 f:P(x) = Q(x) M3 z: P(x)
M Fg:Q(x) = R(x) M3 Ffz: Q(x)
I3 g(fz): R(x)
Mo b Xz.g(fz): P(x) = R(x)
Mo Az.g(fz): ¥Yx(P(x) = R(x))
M EXg.Az.g(fz):Vx(Q(x) = R(x)) = Vx (P(x) = R(x))
EAf.Ag. Az.g(f 2) : Vx (P(x) = Q(x)) = Vx(Q(x) = R(x)) = Vx(P(x) = R(x))

with 1 =7 :Vx(P(x) = Q(x)), Tl =T1,g:Vx(Q(x) = R(x)), 3=T22z:P(x)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000008000 000000000000 000 000000000000 00000

Example: extracting a program from a proof

Example: derivation of the syllogism Barbara

I3 F f:Vx(P(x) = Q(x))
M3 F g :¥x(Q(x) = R(x)) I3 f:P(x) = Q(x) M3 z: P(x)
M Fg:Q(x) = R(x) M3 Ffz: Q(x)
I3 g(fz): R(x)
Mo b Xz.g(fz): P(x) = R(x)
Mo Az.g(fz): ¥Yx(P(x) = R(x))
M EXg.Az.g(fz):Vx(Q(x) = R(x)) = Vx (P(x) = R(x))
EAf.Ag. Az.g(f 2) : Vx (P(x) = Q(x)) = Vx(Q(x) = R(x)) = Vx(P(x) = R(x))

with 1 =7 :Vx(P(x) = Q(x)), Tl =T1,g:Vx(Q(x) = R(x)), 3=T22z:P(x)

’

o Extracted programis: Af.\g.A\z.f(gz) (composition of functions)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000800 000000000000 000 000000000000 00000

Typing examples (1/2)

@ Pairing construct and projections associated to conjunction AN B
(= Cartesian product):

(t,u) = M.ftu . AAB (ift: A u:B)
pair = Axy.(x,y) DVXVY (X =Y = XAY)
fst = Az.z(MAxy.x) : YXVY(XAY=X)
snd = Jz.z(Mxy.y) : Y XVY(XAY=Y)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000800 000000000000 000 000000000000 00000

Typing examples (1/2)

@ Pairing construct and projections associated to conjunction AN B
(= Cartesian product):

(t,u) = M.ftu . AAB (ift: A u:B)
pair = Axy.(x,y) DVXVY (X =Y = XAY)
fst = Az.z(MAxy.x) : YXVY(XAY=X)
snd = Jz.z(Mxy.y) : Y XVY(XAY=Y)

@ Injections associated to disjunction AV B (= direct sum):

Mfg. fx 1 YXVY (X = XVY)
Nfg.gy @ VXYY (Y = XVY)

left
right

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000800 000000000000 000 000000000000 00000

Typing examples (1/2)

@ Pairing construct and projections associated to conjunction AN B
(= Cartesian product):

(t,u) = M.ftu . AAB (ift: A u:B)
pair = Axy.(x,y) DVXVY (X =Y = XAY)
fst = Az.z(MAxy.x) : YXVY(XAY=X)
snd = Jz.z(Mxy.y) : Y XVY(XAY=Y)

@ Injections associated to disjunction AV B (= direct sum):

Mfg. fx 1 YXVY (X = XVY)
Nfg.gy @ VXYY (Y = XVY)

left
right

o Reflexivity, symmetry and transitivity of equality:

eqrefl = X\z.z D Vx (x = x)
eqgsym = Mz.z(Au.u) : VYxVy(x=y=y=x)
eqtrans = JMxyz.y(xz) : VxVyVz(x=y=>y=z=x=2)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000080 000000000000 000 000000000000 00000

Typing examples (2/2)

@ Recall: injections associated to disjunction AV B:

left = Mfg.fx : VXVY(X=XVY)
right = Mfg.gy : VXVY(Y=XVY)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000080 000000000000 000 000000000000 00000

Typing examples (2/2)

@ Recall: injections associated to disjunction AV B:

left = Mfg.fx : VXVY(X=XVY)
right = Mfg.gy : VXVY(Y=XVY)

o Computational contents of the law of excluded middle?

EM = L VX (X V-X)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000080 000000000000 000 000000000000 00000

Typing examples (2/2)

@ Recall: injections associated to disjunction AV B:

left = Mfg.fx : VXVY(X=XVY)
right = Mfg.gy : VXVY(Y=XVY)

o Computational contents of the law of excluded middle:

EM = a«(Mk.right(\x.k(leftx))) : VX (XV-X)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000080 000000000000 000 000000000000 00000

Typing examples (2/2)

@ Recall: injections associated to disjunction AV B:

left = Mfg.fx : VXVY(X=XVY)
right = Mfg.gy : VXVY(Y=XVY)

o Computational contents of the law of excluded middle:

EM = a«(Mk.right(\x.k(leftx))) : VX (XV-X)

@ Double-negation elimination & De Morgan laws:

Az.@(Ak.zk) VX (==X = X)
Azy . z(Ax.yx) IxA(x) = Vx-A(x)
Azy.c(Mk.z(Ax.k(yx))) : —Vx-A(x) = IxA(x)

Introduction 2nd-order arithmetic (PA2) Extracted programs
00000000 0000000000000 000 00000000008

Representing natural numbers

Classical realizability Witness extraction
000000000000 000 000000000000 00000

@ Encoding zero and successor:

0 = Mof.z : 0eN
Anzf . f(nzf) : (¥xeN)s(x)eN

7]
|

Witness extraction

Classical realizability
000000000000 00000

Extracted programs
000000000000 000

2nd-order arithmetic (PA2)
00000000008

Introduction
0000000000000 000

00000000

Representing natural numbers

@ Encoding zero and successor:

0 = Mof.z : 0eN
= Anzf.f(nzf) : (VxeN)s(x)eN

7]

@ Each natural number n € IN is thus represented by the program
n =350 = 5(--(0)-") neN
N—_——
n

(= Krivine numeral n)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 0000000000e 000000000000 000 000000000000 00000

Representing natural numbers

@ Encoding zero and successor:

0 = Mof.z : 0eN
Anzf . f(nzf) : (¥xeN)s(x)eN

7]
|

@ Each natural number n € IN is thus represented by the program

A =350 = 5(--(30)---) : neN
~——

(= Krivine numeral n)

@ Intuitively, the program N behaves as an iterator:
6*U0~U1~7T > Up xT

n+1lxuy-u-m = w*Auuw) w

© Introduction

© Second-order arithmetic (PA2)

Q Extracted programs

© The classical realizability interpretation

0 Witness extraction

«0O)>r «Fr «

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0@0000000000000 000000000000 00000

Classical realizability: principles

@ Intuitions:

o term = “proof’ / stack = “counter-proof”
e process = “contradiction” (slogan: never trust a classical realizer!)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0@0000000000000 000000000000 00000

Classical realizability: principles

@ Intuitions:

o term = “proof’ / stack = “counter-proof”
e process = “contradiction” (slogan: never trust a classical realizer!)

@ Classical realizability model parameterized by a pole L
= set of processes closed under anti-evaluation

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0@0000000000000 000000000000 00000

Classical realizability: principles

@ Intuitions:

o term = “proof’ / stack = “counter-proof”
e process = “contradiction” (slogan: never trust a classical realizer!)

@ Classical realizability model parameterized by a pole L
= set of processes closed under anti-evaluation

@ Each formula A is interpreted as two sets:

o A set of stacks ||A|| (falsity value)
o A set of terms |A| (truth value)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability
00000000 0000000000000 000 00000000000 0@0000000000000

Classical realizability: principles

@ Intuitions:
o term = “proof’ / stack = “counter-proof”

Witness extraction
000000000000 00000

u P . .
e process = “contradiction (slogan: never trust a classical realizer!)

Classical realizability model parameterized by a pole
= set of processes closed under anti-evaluation

@ Each formula A is interpreted as two sets:

o A set of stacks ||A|| (falsity value)
o A set of terms |A| (truth value)

Truth value |A| defined by orthogonality:

Falsity value ||A|| defined by induction on A (negative interpretation)

A = JAIY = {teA :vVrel|A| txmel}

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000000000 00 000000000000 00000

Architecture of the realizability model

@ The realizability model .# is defined from:

o The full standard model .# of PA2: the ground model
(but we could take any model .# of PA2 as well)

o A saturated set of processes 1L C Ax[1 (the pole)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000000000 00 000000000000 00000

Architecture of the realizability model

@ The realizability model .# is defined from:

o The full standard model .# of PA2: the ground model
(but we could take any model .# of PA2 as well)

o A saturated set of processes 1L C Ax[1 (the pole)

@ Architecture:
o First-order terms/variables interpreted as natural numbers n € IN

o Formulas interpreted as falsity values S € (M)

o k-ary second-order variables (and k-ary predicates) interpreted as
falsity functions F : INK — ().

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000000000 00 000000000000 00000

Architecture of the realizability model

@ The realizability model .# is defined from:

o The full standard model .# of PA2: the ground model
(but we could take any model .# of PA2 as well)

o A saturated set of processes 1L C Ax[1 (the pole)

@ Architecture:
o First-order terms/variables interpreted as natural numbers n € IN

o Formulas interpreted as falsity values S € (M)

o k-ary second-order variables (and k-ary predicates) interpreted as
falsity functions F : INK — ().

Formulas with parameters AB == - | F(e,...,e) J

Add a predicate constant F for every falsity function F : INK — PB(M)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000@00000000000 000000000000 00000

Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

o Falsity value ||A| defined by induction on A:

IF(et,...,e)ll = F(elN,...,eN
A= B| = |A-|B|l = {t-m: telA, m€|B|}
Ivx Al = | IIA{x = n}|
nelN
VX Al = |J IA{X = F}|
FiIN0—3(1)

@ Truth value |A| defined by orthogonality:

Al = A1 = {teA : Vre|A] txrecu} |

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000@0000000000 000000000000 00000

The realizability relation

Falsity value ||A|| and truth value |A| depend on the pole 1L
~» write them (sometimes) ||A|| L and |A| L to recall the dependency

Realizability relations

tIFA = telAw (Realizability w.r.t. 1)
tIFA = VI te|AwL (Universal realizability)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 00000@000000000 000000000000 00000

From computation to realizability (1/2)
Fundamental idea: The computational behavior of a term determines
the formula(s) it realizes:

Example 1: A closed term t is identity-like if:

txu-m = u*xm forallue A, m el

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 00000@000000000 000000000000 00000

From computation to realizability (1/2)
Fundamental idea: The computational behavior of a term determines
the formula(s) it realizes:

Example 1: A closed term t is identity-like if:

txu-m = u*xm forallue A, m el

Proposition

If t is identity-like, then ¢ lIF VX (X = X)

Proof: Exercise! (Remark: converse implication holds — exercise!)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 00000@000000000 000000000000 00000

From computation to realizability (1/2)
Fundamental idea: The computational behavior of a term determines
the formula(s) it realizes:

Example 1: A closed term t is identity-like if:

txu-m = u*xm forallue A, m el

Proposition

If t is identity-like, then ¢ lIF VX (X = X)

Proof: Exercise! (Remark: converse implication holds — exercise!)

o Examples of identity-like terms:

o Ax.x, (Ax.x)(Ax.x), etc
o Mx.a(Ak.x), Ix.c(Mk.kx), Ix.c(Ak.kxw), etc.
e Ax.quotex An.unquote n (Az. z)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability
00000000 0000000000000 000 00000000000 000000@00000000

From computation to realizability

Example 2: Control operators:

cxt-m = txky-mw
ke xt-m = txm

Witness extraction
000000000000 00000

(2/2)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability
00000000 0000000000000 000 00000000000 000000@00000000

From computation to realizability

Example 2: Control operators:

cxt-m = txky-mw
ke xt-m = txm

o “Typing” ku: kext-m = txmw

Witness extraction
000000000000 00000

(2/2)

If 7c|A| then kylFA= B

(B any)

Proof: Exercise

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000e00000000 000000000000 00000

From computation to realizability (2/2)

Example 2: Control operators:

cxt-m = txky-mw
kyxt-m = txm

o “Typing” ku: kext-m = txmw

If 7el||A], then kyIFA= B (B any)

Proof: Exercise

o “Typing" «: c*xt-m = txkp-w

Proposition (Realizing Peirce's law)

clF (A=B)=A)=A

Proof: Exercise

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000@0000000 000000000000 00000

Anatomy of the model (1/2)

o Denotation of universal quantification:

Falsity value: IVx Al = U |A{x := n}|| (by definition)
neN

Truth value: Vx Al = ﬂ |A{x := n}| (by orthogonality)
nelN

(and similarly for 2nd-order universal quantification)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000@0000000 000000000000 00000

Anatomy of the model (1/2)

o Denotation of universal quantification:

Falsity value: IVx Al = U |A{x := n}|| (by definition)
neN

Truth value: Vx Al = ﬂ |A{x := n}| (by orthogonality)
nelN

(and similarly for 2nd-order universal quantification)

o Denotation of implication:

Falsity value: IIA= B |A] - |1B]| (by definition)
Truth value: |[A= B| C |Al — |B] (by orthogonality)

writing |A| — |[B| = {te A : YuelA| tuec|B|} (realizability arrow)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 00000000 e000000 000000000000 00000

Anatomy of the model (2/2)

o Degenerate case: 1 =9o

o Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

In the case where 1L = 0, for every closed formula A:
Al = N ifAaEA
o fa A

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 00000000 e000000 000000000000 00000

Anatomy of the model (2/2)

o Degenerate case: 1 =9o

o Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

In the case where 1L = 0, for every closed formula A:

Al = AN if#=A
o fa A

o Non degenerate cases: I # &

o Every truth value |A| is inhabited:
If toxmo € A, then kxoto €|A| forall A (paraproof)

o We shall only consider realizers that are proof-like terms

| 00500000 6000000000000000 00000000005 0000000000000 00500050060000000
Adequacy

(1/2)
Aim: Prove the theorem of adequacy

t: A (in the sense of ANK2) implies tI- A (in the sense of realizability) J

DA

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000008000 00 000000000000 00000

Adequacy (1/2)

Aim: Prove the theorem of adequacy

t: A (in the sense of ANK2) implies tI- A (in the sense of realizability))

@ Closing typing judgments X1 AL Xp t AR DA

o We close logical objects (1st-order terms, formulas, predicates) using
semantic objects (natural numbers, falsity values, falsity functions)

o We close proof-terms using realizers

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000008000 00 000000000000 00000

Adequacy (1/2)

Aim: Prove the theorem of adequacy

t: A (in the sense of ANK2) implies tI- A (in the sense of realizability))

@ Closing typing judgments X1 AL Xp t AR DA

o We close logical objects (1st-order terms, formulas, predicates) using
semantic objects (natural numbers, falsity values, falsity functions)

o We close proof-terms using realizers

Definition (Valuations)

@ A valuation is a function p such that

e p(x)eN for each 1st-order variable x
e p(X): INK — g3() for each 2nd-order variable X of arity k

@ Closure of A with p written A[p] (formula with parameters)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000000 e0000 000000000000 00000

Adequacy (2/2)

Definition (Adequate judgment, adequate rule)

Given a fixed pole I :
Q Ajudgment xy:Ai,...,xp:A,FE t: A isadequate if for every
valuation p and for all uy IF Ay[p], ..., u, IF An[p] we have:

t{x1 = u1,...,xp ;= up} - Alp]

@ A typing rule is adequate if it preserves the property of adequacy
(from the premises to the conclusion of the rule)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000000 e0000 000000000000 00000

Adequacy (2/2)

Definition (Adequate judgment, adequate rule)

Given a fixed pole I :
Q Ajudgment xy:Ai,...,xp:A,FE t: A isadequate if for every
valuation p and for all uy IF Aqfp], ..., un IF As[p] we have:
t{x1 = u1,..., X%, := up} I Alp]

@ A typing rule is adequate if it preserves the property of adequacy
(from the premises to the conclusion of the rule)

© All typing rules of ANK2 are adequate

@ All derivable judgments of ANK2 are adequate

Corollary: If Ft:A (Aclosed formula), then tlFA J

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000000080 00 000000000000 00000

Extending adequacy to subtyping

Definition (Adequate subtyping judgment)

Judgment A < B adequate = || B[p]|| C ||A[p]ll (for all valuations)

Remark: Implies |A[p]| C |B[p]| (for all p), but strictly stronger

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000000080 00 000000000000 00000

Extending adequacy to subtyping

Definition (Adequate subtyping judgment)
Judgment A < B adequate = || B[p]|| C ||A[p]ll (for all valuations)

Remark: Implies |A[p]| C |B[p]| (for all p), but strictly stronger

e Some adequate typing/subtyping rules:

A<B B<C TFt:A A<B
A< A A<C r-t:B

VxA < A{x:=e} VXA < A{X:=P}

A<B A<B A <A B < B’
—— 5 X&FV(A) —————— X¢FV(A)
A < VxB A < VXB A=B < A = B
x¢FV(A) X&FV(A)

Vx(A=B) < A= VxB VX(A=B) < A=VXB

Introduction

2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000000080 00 000000000000 00000
Extending adequacy to subtyping

Definition (Adequate subtyping judgment)

Judgment A < B adequate

= [IBlalll < IA[]l

Remark: Implies |A[p]| C |B[p]| (for all p), but strictly stronger

(for all valuations)

e Some adequate typing/subtyping rules:

A<B B<C TFt:A A<B
A<A AL C r-t:B
VxA < A{x:=e}

VXA < A{X = P}
AsB ZFV(A) A
< VxB

AN<A B<B
——F X X¢FV(A)
A A < VXB

A= B < A= B

x¢ FV(A)
Vx(A=B) < A= VxB

X&FV(A)
VX(A=B) < A=VXB

e Example: VXVY ((X=Y)=X)=X) < ¥X (X = X)

Peirce's law

DNE

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 e00 000000000000 00000

Realizing equalities

o Equality between individuals defined by
ee=e = VZ(Z(a)= Z()) (Leibniz equality)

Denotation of Leibniz equality

Given two closed first-order terms e;, e (and a pole 1)

ler=ell = {”1” = {tm i (txm e} il =[a]
IT= L] = A-T if [er] # [e]

writing 1=VZ(Z=2) and T=9

@ Intuitions:

o A realizer of a true equality (in the ground model .#) behaves as the
identity function \z.z

o A realizer of a false equality (in the ground model .Z) behaves as a
point of backtrack (breakpoint)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000000000 e0 000000000000 00000

Realizing axioms

Corollary 1 (Realizing true equations)

If M = VX (e(X) = ex(X)) (truth in the ground model)

then I = X\z.z IF VX (e(X) = e(X)) (universal realizability)

Corollary 2

All defining equations of primitive recursive function symbols
(+, —, X, etc.) are universally realized by | = Az .z

N

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000000000 e0 000000000000 00000

Realizing axioms

Corollary 1 (Realizing true equations)
If M = VX (e(X) = ex(X)) (truth in the ground model)

then I = X\z.z IF VX (e(X) = e(X)) (universal realizability)

Corollary 2

All defining equations of primitive recursive function symbols
(+, —, X, etc.) are universally realized by | = Az .z

N

Corollary 3 (Realizing Peano axioms)

Az.zIl IIF Vx—(s(x)=0)
I IF VxVy(s(x) =s(y) = x=y)

N,

Theorem: If PA2F A, then 6IIF A for some proof-like term 6 J

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000000000 0e 000000000000 00000

Provability, universal realizability and truth

@ From what precedes:

© A provable = A universally realized (by a proof-like term)
@ A universally realized = A true (in the full standard model)

~> Universal realizability: an intermediate notion
between provability and truth

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 0000000000000 0e 000000000000 00000

Provability, universal realizability and truth

@ From what precedes:

© A provable = A universally realized (by a proof-like term)
@ A universally realized = A true (in the full standard model)

~> Universal realizability: an intermediate notion
between provability and truth
o Beware!
Intuitionistic proofs of A C Classical proofs of A

N N

Intuitionistic realizers of A Classical realizers of A

™R

© Introduction

© Second-order arithmetic (PA2)

Q Extracted programs

@ The classical realizability interpretation

© Witness extraction

«O>r «Fr <

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0O@000000000000000

The problem of witness extraction

@ Problem: Extract a witness from a universal realizer (or a proof)
to IF (3xeN)A(x)

i.e. some n € IN such that A(n) is true

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0O@000000000000000

The problem of witness extraction

@ Problem: Extract a witness from a universal realizer (or a proof)
to IF (3xeN)A(x)

i.e. some n € IN such that A(n) is true

@ This is not always possible!
to IF (3xeN)((x=1AC)V(x=0A-C))

(C = Continuum hypothesis, Goldbach’s conjecture, etc.)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0O@000000000000000

The problem of witness extraction

@ Problem: Extract a witness from a universal realizer (or a proof)
to IF (3xeN)A(x)

i.e. some n € IN such that A(n) is true

@ This is not always possible!
to IF (3xeN)((x=1AC)V(x=0A-C))

(C = Continuum hypothesis, Goldbach’s conjecture, etc.)

@ Two possible compromises:

o Intuitionistic logic: restrict the shape of the realizer ty

(by only keeping intuitionistic reasoning principles)

o Classical logic: restrict the shape of the formula A(x)
(typically: Ad-formulas)

| 00005000 Go00000000000000 00000005000 000000000000000 00ea0005000999000
Storage operators

(1/2)
@ The call-by-value implication:
Formulas AB = - | {eJ=A
with the semantics: ||{e} = A||

={a-nm:n=e" 7e|Al} J

DA

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000

00®00000000000000
(1/2)

@ The call-by-value implication:
Formulas A, B

o | {e}=A
with the semantics: ||{e} = A|| = {ﬁ ST

n=eN me|Al}

@ From the definition: eeEN=A < {e}=A
so that: I lIF VxVZ[(x € N= Z) = ({x} = Z)]

(direct implication)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000

00®00000000000000
(1/2)
@ The call-by-value implication:
Formulas A, B

: {e} = A
with the semantics: ||{e} = AH

n=eN me|Al}

@ From the definition: eeEN=A < {e}=A
so that: I lIF VxVZ[(x € N= Z) = ({x} = Z)]

(direct implication)
Definition (Storage operator)

A storage operator is a closed proof-like term M such that:

M IF VxVZ[({x} = Z) = (x e N = 2Z)]

(converse implication)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000

00®00000000000000
(1/2)
@ The call-by-value implication:
Formulas A, B

: {e} = A
with the semantics: ||{e} = AH

n=eN me|Al}

@ From the definition: eeEN=A < {e}=A
so that: I lIF VxVZ[(x € N= Z) = ({x} = Z)]

(direct implication)
Definition (Storage operator)

A storage operator is a closed proof-like term M such that:
M - VxVZ[({x} = Z) = (x e N = Z)]

(converse implication)
Theorem (Existence)

Storage operators exist, e.g.:

M = Mn.nf(Ahx.h(5x))0

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000@0000000000000

Storage operators (2/2)

@ Intuitively, a storage operator

M - VxVZ [({x} = Z) = (x € N = Z)] |

is a proof-like term that is intended to be applied to

e a function f that only accepts values (i-e. intuitionistic integers)

o a classical integer tl-ne& N (n arbitrary)

and that evaluates (or ‘'smoothes’) the classical integer t into a
value of the form 7 before passing this value to f

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000@0000000000000

Storage operators (2/2)

@ Intuitively, a storage operator

M I YxVZ[({x} = Z) = (x € N = Z)] |

is a proof-like term that is intended to be applied to

e a function f that only accepts values (i-e. intuitionistic integers)

o a classical integer tl-ne& N (n arbitrary)
and that evaluates (or ‘'smoothes’) the classical integer t into a
value of the form 7 before passing this value to f
@ By subtyping, we also have:

M IIF VZ [¥x ({x} = Z(x)) = (¥xeN)Z(x)] J

This means that if a property Z(x) holds for all intuitionistic
integers, then it holds for all classical integers too

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000@0000000000000

Storage operators (2/2)

@ Intuitively, a storage operator

M I YxVZ[({x} = Z) = (x € N = Z)] |

is a proof-like term that is intended to be applied to

e a function f that only accepts values (i-e. intuitionistic integers)

o a classical integer tl-ne& N (n arbitrary)
and that evaluates (or ‘'smoothes’) the classical integer t into a
value of the form 7 before passing this value to f
@ By subtyping, we also have:

M IIF VZ [¥x ({x} = Z(x)) = (¥xeN)Z(x)] J

This means that if a property Z(x) holds for all intuitionistic
integers, then it holds for all classical integers too

@ Conclusion: ecN=A and {e}=- A interchangeable

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0000000000000 000

Computing with storage operators

@ Given a k-ary function symbol f, we let:
Total(f) = (Vx1€N)--- (Vxk e N)(f(x1,...,x) € N)

Comput(f) = Vxi - -V VZ[{xi} = = {x}=
{f(xy.. o x)} = Z) = Z]

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0000000000000 000

Computing with storage operators

@ Given a k-ary function symbol f, we let:
Total(f) = (Vx1€N)--- (Vxk e N)(f(x1,...,x) € N)

Comput(f) = Vxi - -V VZ[{xi} = = {x}=
{f(xy.. o x)} = Z) = Z]

Theorem (Specification of the formula Comput(f))

For all t € A, the following assertions are equivalent:
Q ¢t I Comput(f)
@ t computes f: forall (n,...,nx) €INK, ue A, 7 €n:

txni---Ng-U-T > u*f(nl,...,nk)~7r

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0000000000000 000

Computing with storage operators

@ Given a k-ary function symbol f, we let:
Total(f) (Vxa €N) - (Vxk € N)(F(x1,...,x) € N)

Comput(f) = Vxi - -V VZ[{xi} = = {x}=
{f(xy.. o x)} = Z) = Z]

Theorem (Specification of the formula Comput(f))

For all t € A, the following assertions are equivalent:
Q t I Comput(f)
@ t computes f: for all (ny,...,nk) € IN ueA, well:

txni---Ng-U-T > u*f(nl,...,nk)~7r

@ Using a storage operator M, we can build proof-like terms:

& lIF Total(f) = Comput(f)
& IF Comput(f) = Total(f)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 00000@00000000000

The naive extraction method

o A classical realizer tp I (3x€N)A(x) always evaluates to a
pair witness/justification:

Naive extraction

If to IIF (3xeN)A(x), then there are n € IN and u € A such that:
to* M(Axy .stopxy)-o = stopxA-u-o

(where u |k A(n) w.r.t. the particular pole ... needed to prove the property)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 00000@00000000000

The naive extraction method

o A classical realizer tp I (3x€N)A(x) always evaluates to a
pair witness/justification:

Naive extraction

If to IIF (3xeN)A(x), then there are n € IN and u € A such that:
to* M(Axy .stopxy)-o = stopxA-u-o

(where u |k A(n) w.r.t. the particular pole ... needed to prove the property)

@ But n € IN might be a false witness because the justification
ulk A(n) is cheating! (u might contain hidden continuations)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 00000@00000000000

The naive extraction method

o A classical realizer tp I (3x€N)A(x) always evaluates to a
pair witness/justification:

Naive extraction

If to IIF (3xeN)A(x), then there are n € IN and u € A such that:
to* M(Axy .stopxy)-o = stopxA-u-o

(where u |k A(n) w.r.t. the particular pole ... needed to prove the property)

@ But n € IN might be a false witness because the justification
ulk A(n) is cheating! (u might contain hidden continuations)

@ In the case where ty comes from an intuitionistic proof,
extracted witness n € IN is always correct

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000e0000000000

Extraction in the ¥9-case

Extraction in the ¥9-case

If to Ik (3xeN)(f(x) =0), then
to * M(Axy . y(stopx))-o = stopx7-o

for some n € IN such that f(n) =0

Storage operator M used to evaluate 1st component (x)

2nd component (y) used as a breakpoint

(Relies on the particular structure of equality realizers)

Holds independently from the instruction set

Supports any representation of numerals

(One has to implement the storage operator M accordingly)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000e0000000000

Extraction in the ¥9-case

Extraction in the ¥9-case (+ display intermediate results)

If to Ik (3xeN)(f(x) =0), then
to * M(Axy . printx y (stopx))-¢ > stop*x7-o

for some n € IN such that f(n) =0

Storage operator M used to evaluate 1st component (x)

2nd component (y) used as a breakpoint

(Relies on the particular structure of equality realizers)

Holds independently from the instruction set

Supports any representation of numerals

(One has to implement the storage operator M accordingly)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0000000@000000000

Example: the minimum principle

@ Given a unary function symbol f, write:

Total(f) (VX S N)(f(X) S N) (totality predicate)

x<y = x—y=0 (truncated subtraction)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0000000@000000000

Example: the minimum principle

@ Given a unary function symbol f, write:

Total(f) (VX S N)(f(X) S N) (totality predicate)

x<y = x—y=0 (truncated subtraction)

Theorem (Minimum principle — MinP)

PA2 Total(f) = (3xeN) (Vy eN) (f(x) < f(y))

undecidable

Proof. Reductio ad absurdum + course by value induction)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0000000@000000000

Example: the minimum principle

@ Given a unary function symbol f, write:

Total(f) = (VX S N)(f(X) S N) (totality predicate)

x<y = x—y=0 (truncated subtraction)

Theorem (Minimum principle — MinP)

PA2 Total(f) = (3xeN) (Vy eN) (f(x) < f(y))

undecidable

Proof. Reductio ad absurdum + course by value induction)

@ The minimum principle is not intuitionistically provable (oracle)

@ We cannot apply the ¥9-extraction technique to the above proof
(applied to a totality proof of f), since the conclusion is ¥9

The body (Vy €N)(f(x) < f(y)) of 3-quantification is undecidable

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000008000 00000

Implementation of the minimum principle

I = Ax.x T = M&y.x F = xy.y

<t1, t2> = M.zt b (z fresh A-variable)

pred = An.n(0,0) (A\p.p (Axy.(x,5 x))) (Axy.x)

minus = An,m.m n pred

cmp = An,m.minus nmT (A_.F)

Y = W flyyf) Wf.fyyf))

MinP = X.ac (Ak.Y (Ar,n.(n,Xm.cmp (f n) (f m) 1 (k (r m)))) 0)
I (VxeN) f(x)eN = (IxeN)(VyeN) f(x) < f(y)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000e0000000

Using the minimum principle to prove a ¥ {-formula

o ldea: The value x given by the minimum principle can be used to
prove a ¥ 9-formula, so that we can perform program extraction:

PA2 F Total(f) = (3IxeN) (f(x) < f(2x + 1))

decidable
More generally: PA2 F Total(f) A Total(g) = (Ix€N)(f(x) < f(g(x)))

Proof. Take the point x given by the minimum principle)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000e0000000

Using the minimum principle to prove a ¥ {-formula

o ldea: The value x given by the minimum principle can be used to
prove a ¥ 9-formula, so that we can perform program extraction:

PA2 F Total(f) = (3IxeN) (f(x) < f(2x + 1))

decidable
More generally: PA2 F Total(f) A Total(g) = (Ix€N)(f(x) < f(g(x)))

Proof. Take the point x given by the minimum principle J

o Applying ¥%-extraction to the above non-constructive proof,
we get a correct witness in finitely many evaluation steps

@ How is this witness computed?

Introduction
00000000

2nd-order arithmetic (PA2)
0000000000000 000

Extracted programs
00000000000

Classical realizability
000000000000 000

The algorithm underlying ¥%-extraction

to:

t11

Minimum Principle (oracle)

FxelN) (VyeN) (f(x) < f(1)

witness x + justification

of (YyeIN) (f(x) < f()

x{-Corollary
@xelN) (f(x) < f2x+ 1))

witness x (same as above)
+ justif. of f(x) < f2x+1)

x9-extractor

tg:

o Extract witness x + justification
o Evaluate witness x (using storage op.)

Evaluate Incorrect: backtrack

(half conditional)

justification

Correct: continue

Return witness x

Witness extraction
0000000000 e000000

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1 Oracle says: take x =0 since (Vy € N) (f(0) < f(y)) (false)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1 Oracle says: take x =0 since (Vy € N) (f(0) < f(y)) (false)
Corollary says: take x =0 since £(0) < f(1) (false)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1 Oracle says: take x =0 since (Yy € N) (£(0) < f(y)) (false)
Corollary says: take x =0 since f(0) < f(1) (false)
Zg-extractor evaluates incorrect justification and backtracks

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1 Oracle says: take x =0 since (Yy € N) (£(0) < f(y)) (false)
Corollary says: take x =0 since f(0) < f(1) (false)
Zg-extractor evaluates incorrect justification and backtracks

Step 2 Oracle says: take x =1 since (Yy €N)(f(1) < f(y)) (false)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1 Oracle says: take x =0 since (Yy € N) (£(0) < f(y)) (false)
Corollary says: take x =0 since f(0) < f(1) (false)
Zg-extractor evaluates incorrect justification and backtracks

Step 2 Oracle says: take x =1 since (Yy €N)(f(1) < f(y)) (false)
Corollary says: take x =1 since (1) < f(3) (false)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1 Oracle says: take x =0 since (Yy € N) (£(0) < f(y)) (false)
Corollary says: take x =0 since f(0) < f(1) (false)
Zg-extractor evaluates incorrect justification and backtracks

Step 2 Oracle says: take x =1 since (Yy €N)(f(1) < f(y)) (false)
Corollary says: take x =1 since (1) < f(3) (false)

Z?—extractor evaluates incorrect justification and backtracks

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000
Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)

and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1

Step 2

Step 3

Oracle says: take x =0 since (Yy € N) (f(0) < f(y))
Corollary says: take x =0 since £(0) < f(1)
Zg-extractor evaluates incorrect justification and backtracks

Oracle says: take x =1 since (Yy €N)(f(1) < f(y))
Corollary says: take x =1 since (1) < f(3)
Z?—extractor evaluates incorrect justification and backtracks

Oracle says: take x =3 since (Vy € N)(f(3) < f(y))

(false)
(false)

(false)
(false)

(false)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000
Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)

and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1

Step 2

Step 3

Oracle says: take x =0 since (Yy € N) (f(0) < f(y))
Corollary says: take x =0 since £(0) < f(1)
Zg-extractor evaluates incorrect justification and backtracks

Oracle says: take x =1 since (Yy €N)(f(1) < f(y))
Corollary says: take x =1 since (1) < f(3)
Z?—extractor evaluates incorrect justification and backtracks

Oracle says: take x =3 since (Vy € N)(f(3) < f(y))
Corollary says: take x =3 since f(3) < f(7)

(false)
(false)

(false)
(false)

(false)
(false)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000
Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)

and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1

Step 2

Step 3

Oracle says: take x =0 since (Yy € N) (£(0) < f(y))
Corollary says: take x =0 since f(0) < f(1)
Zg-extractor evaluates incorrect justification and backtracks

Oracle says: take x =1 since (Yy €N)(f(1) < f(y))
Corollary says: take x =1 since (1) < f(3)
Z?—extractor evaluates incorrect justification and backtracks

Oracle says: take x =3 since (Vy € N)(f(3) < f(y))
Corollary says: take x = 3 since f(3) < f(7)
Z?—extractor evaluates incorrect justification and backtracks

(false)
(false)

(false)
(false)

(false)
(false)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000
Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)

and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1

Step 2

Step 3

Step 4

Oracle says: take x =0 since (Yy € N) (£(0) < f(y))
Corollary says: take x =0 since f(0) < f(1)
Zg-extractor evaluates incorrect justification and backtracks

Oracle says: take x =1 since (Yy €N)(f(1) < f(y))
Corollary says: take x =1 since (1) < f(3)
Z?—extractor evaluates incorrect justification and backtracks

Oracle says: take x =3 since (Vy € N)(f(3) < f(y))
Corollary says: take x = 3 since f(3) < f(7)
Z?—extractor evaluates incorrect justification and backtracks

Oracle says: take x =7 since (Yy € N) (f(7) < f(y))

(false)
(false)

(false)
(false)

(false)
(false)

(false)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1 Oracle says: take x =0 since (Yy € N) (£(0) < f(y)) (false)
Corollary says: take x =0 since f(0) < f(1) (false)
Z?-extractor evaluates incorrect justification and backtracks

Step 2 Oracle says: take x =1 since (Yy €N)(f(1) < f(y)) (false)
Corollary says: take x =1 since (1) < f(3) (false)
Z?—extractor evaluates incorrect justification and backtracks

Step 3 Oracle says: take x =3 since (Vy € N)(f(3) < f(y)) (false)
Corollary says: take x = 3 since f(3) < f(7) (false)

Z?—extractor evaluates incorrect justification and backtracks

Step 4 Oracle says: take x =7 since (Yy € N) (f(7) < f(y)) (false)

Step 11 Oracle says: take x = 1023 since (Vy € N) (f(1023) < f(y)) (false)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1 Oracle says: take x =0 since (Yy € N) (£(0) < f(y)) (false)
Corollary says: take x =0 since f(0) < f(1) (false)
Z?-extractor evaluates incorrect justification and backtracks

Step 2 Oracle says: take x =1 since (Yy €N)(f(1) < f(y)) (false)
Corollary says: take x =1 since (1) < f(3) (false)
Z?—extractor evaluates incorrect justification and backtracks

Step 3 Oracle says: take x =3 since (Vy € N)(f(3) < f(y)) (false)
Corollary says: take x = 3 since f(3) < f(7) (false)

Z?—extractor evaluates incorrect justification and backtracks

Step 4 Oracle says: take x =7 since (Yy € N) (f(7) < f(y)) (false)

Step 11 Oracle says: take x = 1023 since (Vy € N) (f(1023) < f(y)) (false)
Corollary says: take x = 1023 since f(1023) < f(2047) (true)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1 Oracle says: take x =0 since (Yy € N) (£(0) < f(y)) (false)
Corollary says: take x =0 since f(0) < f(1) (false)
Z?-extractor evaluates incorrect justification and backtracks

Step 2 Oracle says: take x =1 since (Yy €N)(f(1) < f(y)) (false)
Corollary says: take x =1 since (1) < f(3) (false)
Z?—extractor evaluates incorrect justification and backtracks

Step 3 Oracle says: take x =3 since (Vy € N)(f(3) < f(y)) (false)
Corollary says: take x = 3 since f(3) < f(7) (false)

Z?—extractor evaluates incorrect justification and backtracks

Step 4 Oracle says: take x =7 since (Yy € N) (f(7) < f(y)) (false)

Step 11 Oracle says: take x = 1023 since (Vy € N) (f(1023) < f(y)) (false)
Corollary says: take x = 1023 since f(1023) < f(2047) (true)
Z?—extractor evaluates correct justification and returns x = 1023

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000008 00000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply X3-extraction to the proof of (3x € N)(f(x) < f(2x + 1))

Step 1 Oracle says: take x =0 since (Yy € N) (£(0) < f(y)) (false)
Corollary says: take x =0 since f(0) < f(1) (false)
Z?-extractor evaluates incorrect justification and backtracks

Step 2 Oracle says: take x =1 since (Yy €N)(f(1) < f(y)) (false)
Corollary says: take x =1 since (1) < f(3) (false)
Z?—extractor evaluates incorrect justification and backtracks

Step 3 Oracle says: take x =3 since (Vy € N)(f(3) < f(y)) (false)
Corollary says: take x = 3 since f(3) < f(7) (false)
Z?—extractor evaluates incorrect justification and backtracks

Step 4 Oracle says: take x =7 since (Yy € N) (f(7) < f(y)) (false)

Step 11 Oracle says: take x = 1023 since (Vy € N) (f(1023) < f(y)) (false)
Corollary says: take x = 1023 since f(1023) < f(2047) (true)

Z?—extractor evaluates correct justification and returns x = 1023

Note that answer x = 1023 is correct... but not the point where f reaches its minimum

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000000 e0000

Extraction in the ¥%-case (1/2)

Definition (Conditional refutation)

ra € A s a conditional refutation of the predicate A(x) if

For all n € IN such that .# [~ A(n): ran IIE —A(n)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000000 e0000

Extraction in the ¥%-case (1/2)

Definition (Conditional refutation)

ra € A s a conditional refutation of the predicate A(x) if

For all n € IN such that .# [~ A(n): ran IIE —A(n)

@ Such a conditional refutation can be constructed for every predicate
A(x) of 1st-order arithmetic

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000000 e0000

Extraction in the ¥%-case (1/2)

Definition (Conditional refutation)

ra € A s a conditional refutation of the predicate A(x) if

For all n € IN such that .# [~ A(n): ran IIE —A(n)

@ Such a conditional refutation can be constructed for every predicate
A(x) of 1st-order arithmetic

This result is a consequence of the following

Theorem (Realizing true arithmetic formulas) [Krivine-Miquey]

For every formula A(xi, ..., xx) of 1st-order arithmetic, there exists a
closed proof-like term t4 such that:

If A= A(m,...,nk), then tany---ax IF A(ng, ..., nk)

(for all ny, ..., nx € IN)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

00000000 0000000000000 000 00000000000 0000000000000 00 0000000000000 e000
Extraction in the ¥%-case (2/2)
The Kamikaze extraction method [M. 2009]

Let
Q t - (3xeN)A(x)
@ ra a conditional refutation of the predicate A(x)

Then the process
to* M (Axy .printx (raxy)) - ¢

displays a correct witness after finitely many evaluation steps

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

00000000 0000000000000 000 00000000000 0000000000000 00 0000000000000 e000
Extraction in the ¥%-case (2/2)
The Kamikaze extraction method [M. 2009]

Let
Q t - (3xeN)A(x)
@ ra a conditional refutation of the predicate A(x)

Then the process
to* M (Axy .printx (raxy)) - ¢

displays a correct witness after finitely many evaluation steps

e Remark: No correctness invariant is ensured as soon as the (first)
correct witness has been displayed!

After, anything may happen: crash, infinite loop, displaying incorrect
witnesses, etc. (Kamikaze behavior)

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000000 00e00

Interlude: on numeration systems

@ Numeration systems used in the History:

Tally sticks (35000 BC) i HH H tHH tHH HH H i I
Babylonian (3100 BC) <<LLTT

Egyptian (3000 BC) NNNNII
Roman (1000 BC) XLII
Hindu-Arabic (300 AD) 42

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000000 00e00

Interlude: on numeration systems

@ Numeration systems used in the History:

Tally sticks (35000 BC) i HH H tHH tHH HH H i I
Babylonian (3100 BC) <<LLTT

Egyptian (3000 BC) NNNNII
Roman (1000 BC) XLII
Hindu-Arabic (300 AD) 42

@ Numeration systems used in Logic:

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000000 00e00

Interlude: on numeration systems

@ Numeration systems used in the History:

Tally sticks (35000 BC) i HH H tHH tHH HH H i I
Babylonian (3100 BC) <<LLTT

Egyptian (3000 BC) NNNNII
Roman (1000 BC) XLII
Hindu-Arabic (300 AD) 42

@ Numeration systems used in Logic:

Peano: 555S0

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 000000000000 00e00

Interlude: on numeration systems

@ Numeration systems used in the History:

Tally sticks (35000 BC) i HH H tHH tHH HH H i I
Babylonian (3100 BC) <<LLTT

Egyptian (3000 BC) NNNNII
Roman (1000 BC) XLII
Hindu-Arabic (300 AD) 42

@ Numeration systems used in Logic:

Peano: 555S0

Church: IRiGGuGaaataaaaaataaaltaaaadadcadadadad
) DNN))

(
FECEEEEEEEEEE)NNNNNNNNNINIMININIIII)

Introduction 2nd-order arithmetic (PA2)

Extracted programs Classical realizability Witness extraction

00000000 0000000000000 000 00000000000 0000000000000 00 00000000000000e00
Interlude: on numeration systems
@ Numeration systems used in the History:

Tally sticks (35000 BC) i HH H tHH tHH HH H i I

Babylonian (3100 BC) <<LLTT

Egyptian (3000 BC) NNNNII

Roman (1000 BC) XLII

Hindu-Arabic (300 AD) 42

@ Numeration systems used in Logic:
Peano: 550
Church: Axf . F(F(F(F(F(F(FCF(FCF(FCFCE(FF(FCFCF(FCF(FCFCRCFCF(FCFCR(F(F(
FECEEEEEEEEEE D)D)

Krivine: (Anxf . £(nxf))((Xnxf . £ (nxf))((Anxf . £ (nxf))((Anxf . £ (nxf))((Anxf . £ (nxF))((Anxf . f(nxf))(
(Xnxf . £(nxf))((Anxf . £ (nxf)) ((Anxf . £ (nxF)) (A nxf . £ (nxf))((Anxf . F(nxF))((Anxf . f (nxF))(
(Anxf . £(nxf))((Anxf - £ (nxf)) (A nxf . F(nxf))((Anxf . £(nxF))((Anxf . £ (nxf))((Anxf . £ (nxf))(
(Anxf . £(nxf))((Anxf . £ (nxf))((AnxF . £(nxf))((AnxFf . f (nxF))((AnxF . £ (nxF))((AnxF . f (nxF))(
(Anxf . £(nxf))((Anxf . f(nxf))((AnxF . £(nxf))((Anxf . f (nxF))((Anxf . £ (nxF))((Anxf . f (nxF))(
(Anxf . £(nxf))(Anxf . £(nxf))((Xnxf . f(nxf))((Anxf . f(nxf))((Xnxf . f(nxf))((Xnxf . f(nxf))(
(Anxf . £(nxf))(Anxf . £ (nxf))((XAnxf . f(nxf))((Anxf . f(nxf))((Xnxf . f(nxf))((Xnxf . f(nxf))(
G DNMMMMMMMMMMMNNNN

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

00000000 0000000000000 000 00000000000 000000000000 000 000000000000000e0
Primitive numerals (1/2)
To get rid of Krivine numerals A = 5"0 (cf paleolithic numeration)

we extend the machine with the following instructions:

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

00000000 0000000000000 000 00000000000 000000000000 000 000000000000000e0
Primitive numerals (1/2)
To get rid of Krivine numerals A = 5"0 (cf paleolithic numeration)

we extend the machine with the following instructions:

o For every natural number n € IN, an instruction n € K
with no evaluation rule (i.e. inert constant: pure data)

Intuition: n*m > segmentation fault

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

00000000 0000000000000 000 00000000000 000000000000 000 000000000000000e0
Primitive numerals (1/2)
To get rid of Krivine numerals A = 5"0 (cf paleolithic numeration)

we extend the machine with the following instructions:

o For every natural number n € IN, an instruction n € K
with no evaluation rule (i.e. inert constant: pure data)

Intuition: n*m > segmentation fault
@ An instruction null € K with the rules

uxm ifn=0

nullxn-u-v > .
v 7 otherwise

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction

00000000 0000000000000 000 00000000000 000000000000 000 000000000000000e0
Primitive numerals (1/2)
To get rid of Krivine numerals A = 5"0 (cf paleolithic numeration)

we extend the machine with the following instructions:

o For every natural number n € IN, an instruction n € K
with no evaluation rule (i.e. inert constant: pure data)

Intuition: n*m > segmentation fault

@ An instruction null € K with the rules

uxm ifn=0

nullxn-u-v > .
v 7 otherwise

e Instructions f € K with the rules

fxni---Ng-u-T = wUuxm-m wherem:f(nl,...,nk)J

for all the usual arithmetic operations

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0000000000000000e

Primitive numerals (2/2)

o Call-by-value implication, yet another definition:
Formulas AB = - | [e]=A

with the semantics: ||{e} = A||

{A-m: n=e" 7e|A}

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0000000000000000e

Primitive numerals (2/2)

o Call-by-value implication, yet another definition:
Formulas AB = - | [e]=A

with the semantics: ||{e} = AH = {ﬁ-w I n= eIN, s ||AH}

@ Redefining the set of natural numbers:

N = {x : VZ(([x] = Z) = 2)}

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0000000000000000e

Primitive numerals (2/2)

o Call-by-value implication, yet another definition:
Formulas AB = - | [e]=A

with the semantics: ||{e} = A|| = {ﬁ-Tr T n= eIN, T E ||AH}

@ Redefining the set of natural numbers:

N = {x : VZ(([x] = Z) = Z2)}

box = Ak.kx I Wx([x] = x € V')
box i I nelN
An.nAx.3xbox I (Vx€e€IN)(s(x) € IN)

Anm.nAx.mMAy. () xybox I (¥x,y€IN)(x+y € IN')

Introduction 2nd-order arithmetic (PA2)
00000000 0000000000000 000

Primitive numerals

Extracted programs Classical realizability Witness extraction
00000000000 000000000000 000 0000000000000000e

o Call-by-value implication, yet another definition:

Formulas

AB = - | [e]=A

with the semantics: ||{e} = AH = {ﬁ-Tr T n= eIN, T E ||AH}

(2/2)

@ Redefining the set of natural numbers:

N = {x : VZ(([x] = Z) = Z2)}

box = Ak.kx

box n'

An.nAx.3$xbox
Anm.nAx.mMy . () xy box

- Vx([x] = x € IN)

- nelIN

- (YxeIN)(s(x) € V')

I (Yx,y €IN)(x+y € IN')

rec.cbv = Azpzs. Y Arx.nullxz (Z)x1Ay.zsy (ry))
IEvZz[z(0) = vy (ly] = Z(y) = Z(s(y))) = Vx([x] = Z(x))]
rec := Azpzsn.nAx.rec_cbvzy (Ayz.zs (boxy) z) x

IF VZ[Z(0) = (Vy e IN')(Z(y) = Z(s(y))) = (Vx€IN')Z(x)]

Introduction 2nd-order arithmetic (PA2) Extracted programs Classical realizability Witness extraction
00000000 0000000000000 000 00000000000 000000000000 000 0000000000000000e

Primitive numerals (2/2)

o Call-by-value implication, yet another definition:
Formulas AB = - | [e]=A

with the semantics: ||{e} = AH = {ﬁ-Tr T n= eIN, T E ||AH}

@ Redefining the set of natural numbers:

N = {x : VZ(([x] = Z) = Z2)}

box = Ak.kx - Vx([x] = x € IN')
box 1 I nelN
An.nAx.3xbox I (Yx€IN")(s(x) € IN")
Anm.nAx.mMAy. () xybox I (¥x,y€IN)(x+y € IN')
rec.cbv = Azpzs. Y Arx.nullxz (Z)x1Ay.zsy (ry))
I VZ[Z(0) = Wy (] = Z() = Z(()) = ¥x (1] = Z())]
rec := Azpzsn.nAx.rec_cbvzy (Ayz.zs (boxy) z) x

IF VZ[Z(0) = (Vy e IN')(Z(y) = Z(s(y))) = (Vx€IN')Z(x)]

e Conclusion: I Vx(x € N < x e IN)

	Introduction
	Second-order arithmetic (PA2)
	Extracted programs
	The classical realizability interpretation
	Witness extraction

